

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-tidings 1.1 documentation

django-tidings

django-tidings is a framework for sending email notifications to users who have
registered interest in certain events, such as the modification of some model
object. Used by support.mozilla.com, it is optimized for large-scale
installations. Its features include...

	Asynchronous operation using the celery [http://celeryproject.org/] task queue

	De-duplication of notifications

	Association of subscriptions with either registered Django users or anonymous
email addresses

	Optional confirmation of anonymous subscriptions

	Hook points for customizing any page drawn and any email sent

Contents

	Installation

	Introduction
	A Simple Example

	Events, Watches, and Scoping

	Completing the Event Implementation

	Watching an Instance

	De-duplication

	The Container Pattern

	Settings

	Views

	Design Rationale
	Explicit Event Firing

	Development Notes
	Testing

	Documentation

	Version History

	Reference Documentation
	events

	models

	tasks

	utils

	views

Indices and tables

	Index

	Module Index

	Search Page

Credits

django-tidings was developed by Erik Rose and Paul Craciunoiu, replacing a
simpler progenitor written by the whole support.mozilla.com team, including
Ricky Rosario and James Socol.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Installation

To install django-tidings in your Django project, make these changes to settings.py:

	Add tidings to INSTALLED_APPS:

INSTALLED_APPS = [
 'other',
 'apps',
 'here',
 ...
 'tidings'
]

	Define the settings TIDINGS_FROM_ADDRESS and
TIDINGS_CONFIRM_ANONYMOUS_WATCHES.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Introduction

Here we introduce django-tidings by way of examples and discuss some theory behind
its design.

A Simple Example

On support.mozilla.com, we host a wiki which houses documents in 80 different
human languages. For each document, we keep a record of revisions (in the
standard wiki fashion) stretching back to the document’s creation:

Document ---- Revision 1
 __ Revision 2
 __ Revision 3
 __ ...

We let users register their interest in (or watch) a specific language, and
they are notified when any document in that language is edited. In our “edit
page” view, we explicitly let the system know that a noteworthy event has
occurred, like so...

EditInLanguageEvent(revision).fire()

...which, if revision‘s document was written in English, sends a mail to
anyone who was watching English-language edits. The watching would have been
effected through view code like this:

def watch_language(request):
 """Start notifying the current user of edits in the request's language."""
 EditInLanguageEvent.notify(request.user, language=request.locale)
 # ...and then render a page or something.

Thus we introduce the two core concepts of django-tidings:

	Events

	Things that occur, like the editing of a document in a certain language

	Watches

	Subscriptions. Specifically, mappings from events to the users or email
addresses which are interested in them

Everything in tidings centers around these two types of objects.

Events, Watches, and Scoping

django-tidings is basically a big dispatch engine: something happens (that is,
an Event subclass fires), and tidings then has to
determine which Watches are relevant so it knows
whom to mail. Each kind of event has an event_type, an arbitrary string
that distinguishes it, and each watch references an event subclass by that
string. However, there is more to the watch-event relationship than that; a
watch has a number of other fields which can further refine its scope:

watch ---- event_type
 __ content_type
 __ object_id
 __ 0..n key/value pairs ("filters")

In addition to an event type, a watch may also reference a content type, an
object ID, and one or more filters, key/value pairs whose values come out of
an enumerated set (no larger than integer space). The key concept in
django-tidings, the one which gives it its flexibility, is that only an Event
subclass determines the meaning of its Watches’ fields. event_type always
points to an Event subclass, but that is the only constant. content_type
and object_id are almost always used as their names imply—but only by
convention. And filters are designed from the start to be arbitrary.

As a user of django-tidings, you will be writing a lot of Event subclasses and
deciding how to make use of Watch’s fields for each. Let’s take apart our
simple example to see how the EditInLanguageEvent class might be designed:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	 class EditInLanguageEvent(Event):
 """Event fired when any document in a certain language is edited

 Takes a revision when constructed and filters according to that
 revision's document's language

 notify(), stop_notifying(), and is_notifying() take these args:

 (user_or_email, language=some_language)

 """
 event_type = 'edited wiki document in language'
 filters = set(['language']) # for validation only

 def __init__(self, revision):
 super(EditInLanguageEvent, self).__init__()
 self.revision = revision

 def _users_watching(self, **kwargs):
 return self._users_watching_by_filter(
 language=self.revision.document.language,
 **kwargs)

 ...

This event makes use of only two Watch fields: the
event_type (which is implicitly handled by the framework) and a filter with
the key “language”. content_type and object_id are unused. The action
happens in the _users_watching() method, which Event.fire() calls to determine whom to mail. Line 20 calls
_users_watching_by_filter(), which is the most
interesting method in the entire framework. In essence, this line says “Find me
all the watches matching my event_type and having a ‘language’ filter with
the value self.revision.document.language.” (It is always a good idea to
pass **kwargs along so you can support the exclude option.)

Watch Filters

This is a good point to say a word about WatchFilters. A filter is a key/value pair. The key is a
string and goes into the database verbatim. The value, however, is only a
4-byte unsigned int. If you pass a string as a watch filter value, it will be
hashed to make it fit. Thus, watch filters are no good for storing data but
only for distinguishing among members of enumerated sets.

An exception is if you pass an integer as a filter value. The framework will
notice this and let the int through unmodified. Thus, you can put (unchecked)
integer foreign key references into filters quite happily.

Details of the hashing behavior are documented in
hash_to_unsigned().

Wildcards

Think back to our notify() call:

EditInLanguageEvent.notify(request.user, language=request.locale)

It tells the framework to create a watch with the event_type 'edited wiki
document in locale' (tying it to EditInLanguageEvent) and a filter
mapping “language” to some locale.

Now, what if we had made this call instead, omitting the language kwarg?

EditInLanguageEvent.notify(request.user)

This says “request.user is interested in every EditInLanguageEvent,
regardless of language”, simply by omission of the “language” filter. A similar
logic applies to events which use the content_type or object_id fields:
leave them blank in a call to notify(), and the
user will watch events with any value of them.

If, for some odd reason, a user ends up watching both all
EditInLanguageEvents and German EditInLanguageEvents in particular,
never fear: he will not receive two mails every time someone edits a German
article. tidings will automatically de-duplicate users within the scope of one
event class. Also, when faced with a registered user and an anonymous
subscription having the same email address, tidings will favor the registered
user. That way, any mails you generate will have the opportunity to use a nice
username, etc.

Completing the Event Implementation

A few more methods are necessary to get to a fully working
EditInLanguageEvent. Let’s add them now:

class EditInLanguageEvent(Event):

 # Previous methods here

 def _mails(self, users_and_watches):
 """Construct the mails to send."""
 document = self.revision.document

 # This loop is shown for clarity, but in real code, you should use
 # the tidings.utils.emails_with_users_and_watches convenience
 # function.
 for user, watches in users_and_watches:
 yield EmailMessage(
 'Notification: an edit!',
 'Document %s was edited.' % document.title,
 settings.TIDINGS_FROM_ADDRESS,
 [user.email])

 @classmethod
 def _activation_email(cls, watch, email):
 """Return an EmailMessage to send to anonymous watchers.

 They are expected to follow the activation URL sent in the email to
 activate their watch, so you should include at least that.

 """
 return EmailMessage(
 'Confirm your subscription',
 'Click the link if you really want to subscribe: %s' % \
 cls._activation_url(watch)
 settings.TIDINGS_FROM_ADDRESS,
 [email])

 @classmethod
 def _activation_url(cls, watch):
 """Return a URL pointing to a view that activates the watch."""
 return reverse('myapp.activate_watch', args=[watch.id, watch.secret])

Default implementations of _activation_email() and
_activation_url() are coming in a future version of
tidings.

Watching an Instance

Often, we want to watch for changes to a specific object rather than a class of
them. tidings comes with a purpose-built abstract superclass for this,
InstanceEvent.

In the support.mozilla.com wiki, we allow a user to watch a specific document.
For example...

EditDocumentEvent.notify(request.user, document)

With the help of InstanceEvent, this event can be
implemented just by choosing an event_type and a content_type and,
because we need Revision info in addition to Document info when we build the
mails, overriding __init__():

class EditDocumentEvent(InstanceEvent):
 """Event fired when a certain document is edited"""
 event_type = 'wiki edit document'
 content_type = Document

 def __init__(self, revision):
 """This is another common pattern: we need to pass the Document to
 InstanceEvent's constructor, but we also need to keep the new
 Revision around so we can pull info from it when building our
 mails."""
 super(EditDocumentEvent, self).__init__(revision.document)
 self.revision = revision

 def _mails(self, users_and_watches):
 # ...

For more detail, see the InstanceEvent documentation.

De-duplication

We have already established that mails get de-duplicated within the scope
of one event class, but what about across many events? What happens
when a document is edited and some user was watching both it specifically and
its language in general? Does he receive two mails? Not if you use
EventUnion.

When your code does something that could cause both events to happen, the naive
approach would be to call them serially:

EditDocumentEvent(revision).fire()
EditInLanguageEvent(revision).fire()

That would send two mails. But if we use the magical
EventUnion construct instead...

EventUnion(EditDocumentEvent(revision), EditInLanguageEvent(revision)).fire()

...tidings is informed that you’re firing a bunch of events, and it sends only
one mail.

A few notes:

	The _mails() method from the first event class
passed is the one that’s used, though you can change this by subclassing
EventUnion and overriding its
_mails().

	Like the single-event de-duplication, EventUnion
favors registered users over anonymous email addresses.

The Container Pattern

One common case for de-duplication is when watchable objects contain other
watchable objects, as in a discussion forum where users can watch both threads
and entire forums:

forum ---- thread
 __ thread
 __ thread

In this case, we might imagine having a NewPostInThreadEvent through which
users watch a thread and a NewPostInForumEvent through which they watch a
whole forum. Both events would be InstanceEvent
subclasses:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 class NewPostInForumEvent(InstanceEvent):
 event_type = 'new post in forum'
 content_type = Forum

 def __init__(self, post):
 super(NewPostInForumEvent, self).__init__(post.thread.forum)
 # Need to store the post for _mails
 self.post = post

 class NewPostInThreadEvent(InstanceEvent):
 event_type = 'new post in thread'
 content_type = Thread

 def __init__(self, post):
 super(NewPostInThreadEvent, self).__init__(post.thread)
 # Need to store the post for _mails
 self.post = post

 def fire(self, **kwargs):
 """Notify not only watchers of this thread but of the parent forum as well."""
 return EventUnion(self, NewPostInForumEvent(self.post)).fire(**kwargs)

 def _mails(self, users_and_watches):
 return emails_with_users_and_watches(
 'New post: %s' % self.post.title,
 'forums/email/new_post.ltxt',
 dict(post=post),
 users_and_watches)

On line 20, we cleverly override fire(), replacing InstanceEvent’s simple
implementation with one that fires the union of both events. Thus, callers need
only ever fire NewPostInThreadEvent, and it will take care of the rest.

Since NewPostInForumEvent will now be fired only from an
EventUnion (and not as the first argument), it can get
away without a _mails implementation. The container pattern is very
slimming, both to callers and events.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Settings

django-tidings offers several Django settings to customize its behavior:

	
django.conf.settings.TIDINGS_FROM_ADDRESS

	The address from which tidings’ emails will appear to come. Most of the time,
the Event has an opportunity to override this in
code, but this setting is used as a default for conveniences like
emails_with_users_and_watches() and the default
implementation of Event._activation_email().

Default: No default; you must set it manually.

Example:

TIDINGS_FROM_ADDRESS = 'notifications@example.com'

	
django.conf.settings.TIDINGS_CONFIRM_ANONYMOUS_WATCHES

	A Boolean: whether to require email confirmation of anonymous watches. If
this is True, tidings will send a mail to the creator of an anonymous
watch with a confirmation link. That link should point to a view which calls
Watch.activate() and saves the watch.
(No such built-in view is yet provided.) Until the watch is activated,
tidings will ignore it.

Default: No default; you must set it manually.

Example:

TIDINGS_CONFIRM_ANONYMOUS_WATCHES = True

	
django.conf.settings.TIDINGS_MODEL_BASE

	A dotted path to a model base class to use instead of
django.db.models.Model. This can come in handy if, for example, you would
like to add memcached support to tidings’ models. To avoid staleness, tidings
will use the uncached manager (if it exists) on its models when
performing a staleness-sensitive operation like determining whether a user
has a certain watch.

Default: 'django.db.models.Model'

Example:

TIDINGS_MODEL_BASE = 'sumo.models.ModelBase'

	
django.conf.settings.TIDINGS_REVERSE

	A dotted path to an alternate implementation of Django’s reverse()
function. support.mozilla.com uses this to make tidings aware of the locale
prefixes on its URLs, e.g. /en-US/unsubscribe.

Default: 'django.core.urlresolvers.reverse'

Example:

TIDINGS_REVERSE = 'sumo.urlresolvers.reverse'

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Views

If you wish to include unsubscribe links in your notification emails
(recommended) and you happen to be using Jinja templates, you can point them to
the provided unsubscribe() view:

	
tidings.views.unsubscribe(request, watch_id)[source]

	Unsubscribe from (i.e. delete) the watch of ID watch_id.

Expects an s querystring parameter matching the watch’s secret.

GET will result in a confirmation page (or a failure page if the secret is
wrong). POST will actually delete the watch (again, if the secret is
correct).

The templates assume use of the Jinja templating engine via jingo.Loader
and the presence of a base.html template containing a content
block.

If you aren’t using Jinja via jingo.Loader, you can replace the templates
with your own django templates.

A stock anonymous-watch-confirmation view is planned for a future version of
tidings.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Design Rationale

Explicit Event Firing

Events are manually fired rather than doing something implicit with, for
example, signals. This is for two reasons:

	In the case of events that track changes to model objects, we often want to
tell the user exactly what changed. Pre- or post-save signals don’t give us
the original state of the object necessary to determine this, so we would
have to backtrack, hit the database again, and just generally make a mess
just to save one or two lines of event-firing code.

	Implicitness could easily lead to accidental spam, such as during
development or data migration.

If you still want implicitness, it’s trivial to register a signal handler that
fires an event.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Development Notes

Testing

To run django-tidings’ tests, install
tox [http://tox.readthedocs.org/en/latest/] and run it:

$ pip install tox
$ tox

Documentation

To build the docs, install Sphinx and run this:

make docs

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-tidings 1.1 documentation

Version History

	1.1 (2015-04-23)

	
	Added support for Django 1.7

	Dropped support for Django 1.4, 1.5 and 1.6

	Dropped mock, Fabric and django-nose dependencies.

	Moved tests outside of app and simplified test setup.

	Added Travis CI: https://travis-ci.org/mozilla/django-tidings

	Moved to ReadTheDocs: http://django-tidings.readthedocs.org/

	1.0 (2015-03-03)

	
	Support Django 1.6.

	Fix a bug in reconstituting models under (perhaps) Django 1.5.x and up.

	Remove rate limit on claim_watches task.

	Add tox to support testing against multiple Django versions.

	0.4

	
	Fix a deprecated celery import path.

	Add support for newer versions of Django, and drop support for older ones.
We now support 1.4 and 1.5.

	Add an initial South migration.

Warning

If you’re already using South in your project, you need to run the following
command to create a “fake” migration step in South’s migration history:

python path/to/manage.py migrate tidings --fake

	0.3

	
	Support excluding multiple users when calling
fire().

	0.2

	
	API change: _mails() now receives,
in each user/watch tuple, a list of Watch
objects rather than just a single one. This enables you to list all
relevant watches in your emails or to make decisions from an
EventUnion‘s _mails() method based on
what kind of events the user was subscribed to.

	Expose a few attribute docs to Sphinx.

	0.1

	
	Initial release. In production on support.mozilla.com. API may change.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-tidings 1.1 documentation

Reference Documentation

After understanding the basic concepts of tidings from the Introduction,
these docstrings make a nice comprehensive reference.

events

	
class tidings.events.Event[source]

	Abstract base class for events

An Event represents, simply, something that occurs. A
Watch is a record of someone’s interest in a
certain type of Event, distinguished by Event.event_type.

Fire an Event (SomeEvent.fire()) from the code that causes the
interesting event to occur. Fire it any time the event might have
occurred. The Event will determine whether conditions are right to actually
send notifications; don’t succumb to the temptation to do these tests
outside the Event, because you’ll end up repeating yourself if the event is
ever fired from more than one place.

Event subclasses can optionally represent a more limited scope of
interest by populating the Watch.content_type field and/or adding
related WatchFilter rows holding name/value pairs,
the meaning of which is up to each individual subclass. NULL values are
considered wildcards.

Event subclass instances must be pickleable so they can be
shuttled off to celery tasks.

	
classmethod _activation_email(watch, email)[source]

	Return an EmailMessage to send to anonymous watchers.

They are expected to follow the activation URL sent in the email to
activate their watch, so you should include at least that.

	
classmethod _activation_url(watch)[source]

	Return a URL pointing to a view which activates a watch.

TODO: provide generic implementation of this before liberating.
Generic implementation could involve a setting to the default
reverse() path, e.g. 'tidings.activate_watch'.

	
_mails(users_and_watches)[source]

	Return an iterable yielding an EmailMessage to send to each user.

	Parameters:	users_and_watches – an iterable of (User or EmailUser, [Watches])
pairs where the first element is the user to send to and the second
is a list of watches (usually just one) that indicated the
user’s interest in this event

emails_with_users_and_watches() can come in
handy for generating mails from Django templates.

	
_users_watching(**kwargs)[source]

	Return an iterable of Users and EmailUsers watching this event
and the Watches that map them to it.

Each yielded item is a tuple: (User or EmailUser, [list of Watches]).

Default implementation returns users watching this object’s event_type
and, if defined, content_type.

	
_users_watching_by_filter(object_id=None, exclude=None, **filters)[source]

	Return an iterable of (User/EmailUser,
[Watch objects]) tuples watching the event.

Of multiple Users/EmailUsers having the same email address, only one is
returned. Users are favored over EmailUsers so we are sure to be able
to, for example, include a link to a user profile in the mail.

The list of Watch objects includes both
those tied to the given User (if there is a registered user)
and to any anonymous Watch having the same email address. This
allows you to include all relevant unsubscribe URLs in a mail,
for example. It also lets you make decisions in the
_mails() method of
EventUnion based on the kinds of
watches found.

“Watching the event” means having a Watch whose event_type is
self.event_type, whose content_type is self.content_type or
NULL, whose object_id is object_id or NULL, and whose
WatchFilter rows match as follows: each name/value pair given in
filters must be matched by a related WatchFilter, or there must be
no related WatchFilter having that name. If you find yourself wanting
the lack of a particularly named WatchFilter to scuttle the match, use
a different event_type instead.

	Parameters:	exclude – If a saved user is passed in as this argument, that user
will never be returned, though anonymous watches having the same
email address may. A sequence of users may also be passed in.

	
classmethod _validate_filters(filters)[source]

	Raise a TypeError if filters contains any keys inappropriate to
this event class.

	
classmethod _watches_belonging_to_user(user_or_email, object_id=None, **filters)[source]

	Return a QuerySet of watches having the given user or email, having
(only) the given filters, and having the event_type and content_type
attrs of the class.

Matched Watches may be either confirmed and unconfirmed. They may
include duplicates if the get-then-create race condition in
notify() allowed them to be created.

If you pass an email, it will be matched against only the email
addresses of anonymous watches. At the moment, the only integration
point planned between anonymous and registered watches is the claiming
of anonymous watches of the same email address on user registration
confirmation.

If you pass the AnonymousUser, this will return an empty QuerySet.

	
classmethod description_of_watch(watch)[source]

	Return a description of the Watch which can be used in emails.

For example, “changes to English articles”

	
filters = set([])

	Possible filter keys, for validation only. For example:
set(['color', 'flavor'])

	
fire(exclude=None)[source]

	Asynchronously notify everyone watching the event.

We are explicit about sending notifications; we don’t just key off
creation signals, because the receiver of a post_save signal has no
idea what just changed, so it doesn’t know which notifications to send.
Also, we could easily send mail accidentally: for instance, during
tests. If we want implicit event firing, we can always register a
signal handler that calls fire().

	Parameters:	exclude – If a saved user is passed in, that user will not be
notified, though anonymous notifications having the same email
address may still be sent. A sequence of users may also be passed in.

	
classmethod is_notifying(user_or_email_, object_id=None, **filters)[source]

	Return whether the user/email is watching this event (either
active or inactive watches), conditional on meeting the criteria in
filters.

Count only watches that match the given filters exactly–not ones which
match merely a superset of them. This lets callers distinguish between
watches which overlap in scope. Equivalently, this lets callers check
whether notify() has been called with these arguments.

Implementations in subclasses may take different arguments–for
example, to assume certain filters–though most will probably just use
this. However, subclasses should clearly document what filters they
supports and the meaning of each.

Passing this an AnonymousUser always returns False. This means
you can always pass it request.user in a view and get a sensible
response.

	
classmethod notify(user_or_email_, object_id=None, **filters)[source]

	Start notifying the given user or email address when this event
occurs and meets the criteria given in filters.

Return the created (or the existing matching) Watch so you can call
activate() on it if you’re so inclined.

Implementations in subclasses may take different arguments; see the
docstring of is_notifying().

Send an activation email if an anonymous watch is created and
TIDINGS_CONFIRM_ANONYMOUS_WATCHES is
True. If the activation request fails, raise a
ActivationRequestFailed exception.

Calling notify() twice for an anonymous user will send the
email each time.

	
classmethod stop_notifying(user_or_email_, **filters)[source]

	Delete all watches matching the exact user/email and filters.

Delete both active and inactive watches. If duplicate watches
exist due to the get-then-create race condition, delete them all.

Implementations in subclasses may take different arguments; see the
docstring of is_notifying().

	
class tidings.events.EventUnion(*events)[source]

	Fireable conglomeration of multiple events

Use this when you want to send a single mail to each person watching any of
several events. For example, this sends only 1 mail to a given user, even
if he was being notified of all 3 events:

EventUnion(SomeEvent(), OtherEvent(), ThirdEvent()).fire()

	
__init__(*events)[source]

	

	Parameters:	events – the events of which to take the union

	
_mails(users_and_watches)[source]

	Default implementation calls the
_mails() of my first event but may
pass it any of my events as self.

Use this default implementation when the content of each event’s mail
template is essentially the same, e.g. “This new post was made.
Enjoy.”. When the receipt of a second mail from the second event would
add no value, this is a fine choice. If the second event’s email would
add value, you should probably fire both events independently and let
both mails be delivered. Or, if you would like to send a single mail
with a custom template for a batch of events, just subclass
EventUnion and override this method.

	
class tidings.events.InstanceEvent(instance, *args, **kwargs)[source]

	Abstract superclass for watching a specific instance of a Model.

Subclasses must specify an event_type and should specify a
content_type.

	
__init__(instance, *args, **kwargs)[source]

	

	Parameters:	instance – the instance someone would have to be watching in order to be notified when this event is fired

	
_users_watching(**kwargs)[source]

	Return users watching this instance.

	
classmethod is_notifying(user_or_email, instance)[source]

	Check if the watch created by notify exists.

	
classmethod notify(user_or_email, instance)[source]

	Create, save, and return a watch which fires when something
happens to instance.

	
classmethod stop_notifying(user_or_email, instance)[source]

	Delete the watch created by notify.

	
exception tidings.events.ActivationRequestFailed(msgs)[source]

	Raised when activation request fails, e.g. if email could not be sent

models

	
class tidings.models.EmailUser(email='')[source]

	An anonymous user identified only by email address

To test whether a returned user is an anonymous user, call
is_anonymous().

	
class tidings.models.NotificationsMixin(*args, **kwargs)[source]

	Mixin for notifications models that adds watches as a generic relation.

So we get cascading deletes for free, yay!

	
class tidings.models.Watch(*args, **kwargs)[source]

	The registration of a user’s interest in a certain event

At minimum, specifies an event_type and thereby an
Event subclass. May also specify a content type
and/or object ID and, indirectly, any number of
WatchFilters.

	
activate()[source]

	Enable this watch so it actually fires.

Return self to support method chaining.

	
content_type

	Optional reference to a content type:

	
email = None

	Email stored only in the case of anonymous users:

	
event_type = None

	Key used by an Event to find watches it manages:

	
is_active = None

	Active watches receive notifications, inactive watches don’t.

	
secret = None

	Secret for activating anonymous watch email addresses.

	
unsubscribe_url()[source]

	Return the absolute URL to visit to delete me.

	
class tidings.models.WatchFilter(*args, **kwargs)[source]

	Additional key/value pairs that pare down the scope of a watch

	
value = None

	Either an int or the hash of an item in a reasonably small set, which is
indicated by the name field. See comments by
hash_to_unsigned() for more on what is reasonably
small.

	
tidings.models.multi_raw(query, params, models, model_to_fields)[source]

	Scoop multiple model instances out of the DB at once, given a query that
returns all fields of each.

Return an iterable of sequences of model instances parallel to the
models sequence of classes. For example:

[(<User such-and-such>, <Watch such-and-such>), ...]

tasks

	
tidings.tasks.claim_watches(user)[source]

	Attach any anonymous watches having a user’s email to that user.

Call this from your user registration process if you like.

utils

	
tidings.utils.hash_to_unsigned(data)[source]

	If data is a string or unicode string, return an unsigned 4-byte int
hash of it. If data is already an int that fits those parameters,
return it verbatim.

If data is an int outside that range, behavior is undefined at the
moment. We rely on the PositiveIntegerField on
WatchFilter to scream if the int is too long for
the field.

We use CRC32 to do the hashing. Though CRC32 is not a good general-purpose
hash function, it has no collisions on a dictionary of 38,470 English
words, which should be fine for the small sets that WatchFilters are designed to enumerate. As a bonus, it is
fast and available as a built-in function in some DBs. If your set of
filter values is very large or has different CRC32 distribution properties
than English words, you might want to do your own hashing in your
Event subclass and pass ints when specifying
filter values.

	
tidings.utils.emails_with_users_and_watches(subject, template_path, vars, users_and_watches, from_email='nobody@example.com', **extra_kwargs)[source]

	Return iterable of EmailMessages with user and watch values substituted.

A convenience function for generating emails by repeatedly rendering a
Django template with the given vars plus a user and watches key
for each pair in users_and_watches

	Parameters:	
	template_path – path to template file

	vars – a map which becomes the Context passed in to the template

	extra_kwargs – additional kwargs to pass into EmailMessage constructor

views

	
tidings.views.unsubscribe(request, watch_id)[source]

	Unsubscribe from (i.e. delete) the watch of ID watch_id.

Expects an s querystring parameter matching the watch’s secret.

GET will result in a confirmation page (or a failure page if the secret is
wrong). POST will actually delete the watch (again, if the secret is
correct).

The templates assume use of the Jinja templating engine via jingo.Loader
and the presence of a base.html template containing a content
block.

If you aren’t using Jinja via jingo.Loader, you can replace the templates
with your own django templates.

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-tidings 1.1 documentation

 Python Module Index

 d |
 t

 			

 		
 d	

 	[image: -]
 	
 django	

 	
 	
 django.conf.settings	

 			

 		
 t	

 	[image: -]
 	
 tidings	

 	
 	
 tidings.events	

 	
 	
 tidings.models	

 	
 	
 tidings.tasks	

 	
 	
 tidings.utils	

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-tidings 1.1 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | H
 | I
 | M
 | N
 | S
 | T
 | U
 | V
 | W

_

 	

 	__init__() (tidings.events.EventUnion method)

 	

 	(tidings.events.InstanceEvent method)

 	_activation_email() (tidings.events.Event class method)

 	_activation_url() (tidings.events.Event class method)

 	_mails() (tidings.events.Event method)

 	

 	(tidings.events.EventUnion method)

 	

 	_users_watching() (tidings.events.Event method)

 	

 	(tidings.events.InstanceEvent method)

 	_users_watching_by_filter() (tidings.events.Event method)

 	_validate_filters() (tidings.events.Event class method)

 	_watches_belonging_to_user() (tidings.events.Event class method)

A

 	

 	activate() (tidings.models.Watch method)

 	

 	ActivationRequestFailed

C

 	

 	claim_watches() (in module tidings.tasks)

 	

 	content_type (tidings.models.Watch attribute)

D

 	

 	description_of_watch() (tidings.events.Event class method)

 	

 	django.conf.settings (module)

E

 	

 	email (tidings.models.Watch attribute)

 	emails_with_users_and_watches() (in module tidings.utils)

 	EmailUser (class in tidings.models)

 	

 	Event (class in tidings.events)

 	event_type (tidings.models.Watch attribute)

 	EventUnion (class in tidings.events)

F

 	

 	filters (tidings.events.Event attribute)

 	

 	fire() (tidings.events.Event method)

H

 	

 	hash_to_unsigned() (in module tidings.utils)

I

 	

 	InstanceEvent (class in tidings.events)

 	is_active (tidings.models.Watch attribute)

 	

 	is_notifying() (tidings.events.Event class method)

 	

 	(tidings.events.InstanceEvent class method)

M

 	

 	multi_raw() (in module tidings.models)

N

 	

 	NotificationsMixin (class in tidings.models)

 	

 	notify() (tidings.events.Event class method)

 	

 	(tidings.events.InstanceEvent class method)

S

 	

 	secret (tidings.models.Watch attribute)

 	

 	stop_notifying() (tidings.events.Event class method)

 	

 	(tidings.events.InstanceEvent class method)

T

 	

 	tidings.events (module)

 	tidings.models (module)

 	tidings.tasks (module)

 	tidings.utils (module)

 	

 	TIDINGS_CONFIRM_ANONYMOUS_WATCHES (in module django.conf.settings)

 	TIDINGS_FROM_ADDRESS (in module django.conf.settings)

 	TIDINGS_MODEL_BASE (in module django.conf.settings)

 	TIDINGS_REVERSE (in module django.conf.settings)

U

 	

 	unsubscribe() (in module tidings.views)

 	

 	unsubscribe_url() (tidings.models.Watch method)

V

 	

 	value (tidings.models.WatchFilter attribute)

W

 	

 	Watch (class in tidings.models)

 	

 	WatchFilter (class in tidings.models)

 Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 All modules for which code is available

		django.db.models.fields.related

		tidings.events

		tidings.models

		tidings.tasks

		tidings.utils

		tidings.views

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_modules/django/db/models/fields/related.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for django.db.models.fields.related

from __future__ import unicode_literals

import warnings
from operator import attrgetter

from django import forms
from django.apps import apps
from django.core import checks, exceptions
from django.core.exceptions import FieldDoesNotExist
from django.db import connection, connections, router, transaction
from django.db.backends import utils
from django.db.models import Q, signals
from django.db.models.deletion import CASCADE, SET_DEFAULT, SET_NULL
from django.db.models.fields import (
 BLANK_CHOICE_DASH, AutoField, Field, IntegerField, PositiveIntegerField,
 PositiveSmallIntegerField,
)
from django.db.models.lookups import IsNull
from django.db.models.query import QuerySet
from django.db.models.query_utils import PathInfo
from django.utils import six
from django.utils.deprecation import RemovedInDjango20Warning
from django.utils.encoding import force_text, smart_text
from django.utils.functional import cached_property, curry
from django.utils.translation import ugettext_lazy as _

RECURSIVE_RELATIONSHIP_CONSTANT = 'self'

def add_lazy_relation(cls, field, relation, operation):
 """
 Adds a lookup on ``cls`` when a related field is defined using a string,
 i.e.::

 class MyModel(Model):
 fk = ForeignKey("AnotherModel")

 This string can be:

 * RECURSIVE_RELATIONSHIP_CONSTANT (i.e. "self") to indicate a recursive
 relation.

 * The name of a model (i.e "AnotherModel") to indicate another model in
 the same app.

 * An app-label and model name (i.e. "someapp.AnotherModel") to indicate
 another model in a different app.

 If the other model hasn't yet been loaded -- almost a given if you're using
 lazy relationships -- then the relation won't be set up until the
 class_prepared signal fires at the end of model initialization.

 operation is the work that must be performed once the relation can be resolved.
 """
 # Check for recursive relations
 if relation == RECURSIVE_RELATIONSHIP_CONSTANT:
 app_label = cls._meta.app_label
 model_name = cls.__name__

 else:
 # Look for an "app.Model" relation

 if isinstance(relation, six.string_types):
 try:
 app_label, model_name = relation.split(".")
 except ValueError:
 # If we can't split, assume a model in current app
 app_label = cls._meta.app_label
 model_name = relation
 else:
 # it's actually a model class
 app_label = relation._meta.app_label
 model_name = relation._meta.object_name

 # Try to look up the related model, and if it's already loaded resolve the
 # string right away. If get_registered_model raises a LookupError, it means
 # that the related model isn't loaded yet, so we need to pend the relation
 # until the class is prepared.
 try:
 model = cls._meta.apps.get_registered_model(app_label, model_name)
 except LookupError:
 key = (app_label, model_name)
 value = (cls, field, operation)
 cls._meta.apps._pending_lookups.setdefault(key, []).append(value)
 else:
 operation(field, model, cls)

def do_pending_lookups(sender, **kwargs):
 """
 Handle any pending relations to the sending model. Sent from class_prepared.
 """
 key = (sender._meta.app_label, sender.__name__)
 for cls, field, operation in sender._meta.apps._pending_lookups.pop(key, []):
 operation(field, sender, cls)

signals.class_prepared.connect(do_pending_lookups)

class RelatedField(Field):
 # Field flags
 one_to_many = False
 one_to_one = False
 many_to_many = False
 many_to_one = False

 @cached_property
 def related_model(self):
 # Can't cache this property until all the models are loaded.
 apps.check_models_ready()
 return self.rel.to

 def check(self, **kwargs):
 errors = super(RelatedField, self).check(**kwargs)
 errors.extend(self._check_related_name_is_valid())
 errors.extend(self._check_relation_model_exists())
 errors.extend(self._check_referencing_to_swapped_model())
 errors.extend(self._check_clashes())
 return errors

 def _check_related_name_is_valid(self):
 import re
 import keyword
 related_name = self.rel.related_name

 is_valid_id = (related_name and re.match('^[a-zA-Z_][a-zA-Z0-9_]*$', related_name)
 and not keyword.iskeyword(related_name))
 if related_name and not (is_valid_id or related_name.endswith('+')):
 return [
 checks.Error(
 "The name '%s' is invalid related_name for field %s.%s" %
 (self.rel.related_name, self.model._meta.object_name,
 self.name),
 hint="Related name must be a valid Python identifier or end with a '+'",
 obj=self,
 id='fields.E306',
)
]
 return []

 def _check_relation_model_exists(self):
 rel_is_missing = self.rel.to not in apps.get_models()
 rel_is_string = isinstance(self.rel.to, six.string_types)
 model_name = self.rel.to if rel_is_string else self.rel.to._meta.object_name
 if rel_is_missing and (rel_is_string or not self.rel.to._meta.swapped):
 return [
 checks.Error(
 ("Field defines a relation with model '%s', which "
 "is either not installed, or is abstract.") % model_name,
 hint=None,
 obj=self,
 id='fields.E300',
)
]
 return []

 def _check_referencing_to_swapped_model(self):
 if (self.rel.to not in apps.get_models() and
 not isinstance(self.rel.to, six.string_types) and
 self.rel.to._meta.swapped):
 model = "%s.%s" % (
 self.rel.to._meta.app_label,
 self.rel.to._meta.object_name
)
 return [
 checks.Error(
 ("Field defines a relation with the model '%s', "
 "which has been swapped out.") % model,
 hint="Update the relation to point at 'settings.%s'." % self.rel.to._meta.swappable,
 obj=self,
 id='fields.E301',
)
]
 return []

 def _check_clashes(self):
 """ Check accessor and reverse query name clashes. """

 from django.db.models.base import ModelBase

 errors = []
 opts = self.model._meta

 # `f.rel.to` may be a string instead of a model. Skip if model name is
 # not resolved.
 if not isinstance(self.rel.to, ModelBase):
 return []

 # If the field doesn't install backward relation on the target model (so
 # `is_hidden` returns True), then there are no clashes to check and we
 # can skip these fields.
 if self.rel.is_hidden():
 return []

 try:
 self.rel
 except AttributeError:
 return []

 # Consider that we are checking field `Model.foreign` and the models
 # are:
 #
 # class Target(models.Model):
 # model = models.IntegerField()
 # model_set = models.IntegerField()
 #
 # class Model(models.Model):
 # foreign = models.ForeignKey(Target)
 # m2m = models.ManyToManyField(Target)

 rel_opts = self.rel.to._meta
 # rel_opts.object_name == "Target"
 rel_name = self.rel.get_accessor_name() # i. e. "model_set"
 rel_query_name = self.related_query_name() # i. e. "model"
 field_name = "%s.%s" % (opts.object_name,
 self.name) # i. e. "Model.field"

 # Check clashes between accessor or reverse query name of `field`
 # and any other field name -- i.e. accessor for Model.foreign is
 # model_set and it clashes with Target.model_set.
 potential_clashes = rel_opts.fields + rel_opts.many_to_many
 for clash_field in potential_clashes:
 clash_name = "%s.%s" % (rel_opts.object_name,
 clash_field.name) # i. e. "Target.model_set"
 if clash_field.name == rel_name:
 errors.append(
 checks.Error(
 "Reverse accessor for '%s' clashes with field name '%s'." % (field_name, clash_name),
 hint=("Rename field '%s', or add/change a related_name "
 "argument to the definition for field '%s'.") % (clash_name, field_name),
 obj=self,
 id='fields.E302',
)
)

 if clash_field.name == rel_query_name:
 errors.append(
 checks.Error(
 "Reverse query name for '%s' clashes with field name '%s'." % (field_name, clash_name),
 hint=("Rename field '%s', or add/change a related_name "
 "argument to the definition for field '%s'.") % (clash_name, field_name),
 obj=self,
 id='fields.E303',
)
)

 # Check clashes between accessors/reverse query names of `field` and
 # any other field accessor -- i. e. Model.foreign accessor clashes with
 # Model.m2m accessor.
 potential_clashes = (r for r in rel_opts.related_objects if r.field is not self)
 for clash_field in potential_clashes:
 clash_name = "%s.%s" % (# i. e. "Model.m2m"
 clash_field.related_model._meta.object_name,
 clash_field.field.name)
 if clash_field.get_accessor_name() == rel_name:
 errors.append(
 checks.Error(
 "Reverse accessor for '%s' clashes with reverse accessor for '%s'." % (field_name, clash_name),
 hint=("Add or change a related_name argument "
 "to the definition for '%s' or '%s'.") % (field_name, clash_name),
 obj=self,
 id='fields.E304',
)
)

 if clash_field.get_accessor_name() == rel_query_name:
 errors.append(
 checks.Error(
 "Reverse query name for '%s' clashes with reverse query name for '%s'."
 % (field_name, clash_name),
 hint=("Add or change a related_name argument "
 "to the definition for '%s' or '%s'.") % (field_name, clash_name),
 obj=self,
 id='fields.E305',
)
)

 return errors

 def db_type(self, connection):
 '''By default related field will not have a column
 as it relates columns to another table'''
 return None

 def contribute_to_class(self, cls, name, virtual_only=False):
 sup = super(RelatedField, self)

 # Store the opts for related_query_name()
 self.opts = cls._meta

 if hasattr(sup, 'contribute_to_class'):
 sup.contribute_to_class(cls, name, virtual_only=virtual_only)

 if not cls._meta.abstract and self.rel.related_name:
 related_name = force_text(self.rel.related_name) % {
 'class': cls.__name__.lower(),
 'app_label': cls._meta.app_label.lower()
 }
 self.rel.related_name = related_name
 other = self.rel.to
 if isinstance(other, six.string_types) or other._meta.pk is None:
 def resolve_related_class(field, model, cls):
 field.rel.to = model
 field.do_related_class(model, cls)
 add_lazy_relation(cls, self, other, resolve_related_class)
 else:
 self.do_related_class(other, cls)

 @property
 def swappable_setting(self):
 """
 Gets the setting that this is powered from for swapping, or None
 if it's not swapped in / marked with swappable=False.
 """
 if self.swappable:
 # Work out string form of "to"
 if isinstance(self.rel.to, six.string_types):
 to_string = self.rel.to
 else:
 to_string = "%s.%s" % (
 self.rel.to._meta.app_label,
 self.rel.to._meta.object_name,
)
 # See if anything swapped/swappable matches
 for model in apps.get_models(include_swapped=True):
 if model._meta.swapped:
 if model._meta.swapped == to_string:
 return model._meta.swappable
 if ("%s.%s" % (model._meta.app_label, model._meta.object_name)) == to_string and model._meta.swappable:
 return model._meta.swappable
 return None

 def set_attributes_from_rel(self):
 self.name = self.name or (self.rel.to._meta.model_name + '_' + self.rel.to._meta.pk.name)
 if self.verbose_name is None:
 self.verbose_name = self.rel.to._meta.verbose_name
 self.rel.set_field_name()

 @property
 def related(self):
 warnings.warn(
 "Usage of field.related has been deprecated. Use field.rel instead.",
 RemovedInDjango20Warning, 2)
 return self.rel

 def do_related_class(self, other, cls):
 self.set_attributes_from_rel()
 if not cls._meta.abstract:
 self.contribute_to_related_class(other, self.rel)

 def get_limit_choices_to(self):
 """Returns 'limit_choices_to' for this model field.

 If it is a callable, it will be invoked and the result will be
 returned.
 """
 if callable(self.rel.limit_choices_to):
 return self.rel.limit_choices_to()
 return self.rel.limit_choices_to

 def formfield(self, **kwargs):
 """Passes ``limit_choices_to`` to field being constructed.

 Only passes it if there is a type that supports related fields.
 This is a similar strategy used to pass the ``queryset`` to the field
 being constructed.
 """
 defaults = {}
 if hasattr(self.rel, 'get_related_field'):
 # If this is a callable, do not invoke it here. Just pass
 # it in the defaults for when the form class will later be
 # instantiated.
 limit_choices_to = self.rel.limit_choices_to
 defaults.update({
 'limit_choices_to': limit_choices_to,
 })
 defaults.update(kwargs)
 return super(RelatedField, self).formfield(**defaults)

 def related_query_name(self):
 # This method defines the name that can be used to identify this
 # related object in a table-spanning query. It uses the lower-cased
 # object_name by default, but this can be overridden with the
 # "related_name" option.
 return self.rel.related_query_name or self.rel.related_name or self.opts.model_name

class SingleRelatedObjectDescriptor(object):
 # This class provides the functionality that makes the related-object
 # managers available as attributes on a model class, for fields that have
 # a single "remote" value, on the class pointed to by a related field.
 # In the example "place.restaurant", the restaurant attribute is a
 # SingleRelatedObjectDescriptor instance.
 def __init__(self, related):
 self.related = related
 self.cache_name = related.get_cache_name()

 @cached_property
 def RelatedObjectDoesNotExist(self):
 # The exception isn't created at initialization time for the sake of
 # consistency with `ReverseSingleRelatedObjectDescriptor`.
 return type(
 str('RelatedObjectDoesNotExist'),
 (self.related.related_model.DoesNotExist, AttributeError),
 {}
)

 def is_cached(self, instance):
 return hasattr(instance, self.cache_name)

 def get_queryset(self, **hints):
 manager = self.related.related_model._default_manager
 # If the related manager indicates that it should be used for
 # related fields, respect that.
 if not getattr(manager, 'use_for_related_fields', False):
 manager = self.related.related_model._base_manager
 return manager.db_manager(hints=hints).all()

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = self.get_queryset()
 queryset._add_hints(instance=instances[0])

 rel_obj_attr = attrgetter(self.related.field.attname)
 instance_attr = lambda obj: obj._get_pk_val()
 instances_dict = {instance_attr(inst): inst for inst in instances}
 query = {'%s__in' % self.related.field.name: instances}
 queryset = queryset.filter(**query)

 # Since we're going to assign directly in the cache,
 # we must manage the reverse relation cache manually.
 rel_obj_cache_name = self.related.field.get_cache_name()
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, rel_obj_cache_name, instance)
 return queryset, rel_obj_attr, instance_attr, True, self.cache_name

 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self
 try:
 rel_obj = getattr(instance, self.cache_name)
 except AttributeError:
 related_pk = instance._get_pk_val()
 if related_pk is None:
 rel_obj = None
 else:
 params = {}
 for lh_field, rh_field in self.related.field.related_fields:
 params['%s__%s' % (self.related.field.name, rh_field.name)] = getattr(instance, rh_field.attname)
 try:
 rel_obj = self.get_queryset(instance=instance).get(**params)
 except self.related.related_model.DoesNotExist:
 rel_obj = None
 else:
 setattr(rel_obj, self.related.field.get_cache_name(), instance)
 setattr(instance, self.cache_name, rel_obj)
 if rel_obj is None:
 raise self.RelatedObjectDoesNotExist(
 "%s has no %s." % (
 instance.__class__.__name__,
 self.related.get_accessor_name()
)
)
 else:
 return rel_obj

 def __set__(self, instance, value):
 # The similarity of the code below to the code in
 # ReverseSingleRelatedObjectDescriptor is annoying, but there's a bunch
 # of small differences that would make a common base class convoluted.

 # If null=True, we can assign null here, but otherwise the value needs
 # to be an instance of the related class.
 if value is None and self.related.field.null is False:
 raise ValueError(
 'Cannot assign None: "%s.%s" does not allow null values.' % (
 instance._meta.object_name,
 self.related.get_accessor_name(),
)
)
 elif value is not None and not isinstance(value, self.related.related_model):
 raise ValueError(
 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (
 value,
 instance._meta.object_name,
 self.related.get_accessor_name(),
 self.related.related_model._meta.object_name,
)
)
 elif value is not None:
 if instance._state.db is None:
 instance._state.db = router.db_for_write(instance.__class__, instance=value)
 elif value._state.db is None:
 value._state.db = router.db_for_write(value.__class__, instance=instance)
 elif value._state.db is not None and instance._state.db is not None:
 if not router.allow_relation(value, instance):
 raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value)

 related_pk = tuple(getattr(instance, field.attname) for field in self.related.field.foreign_related_fields)
 if not self.related.field.allow_unsaved_instance_assignment and None in related_pk:
 raise ValueError(
 'Cannot assign "%r": "%s" instance isn\'t saved in the database.' %
 (value, instance._meta.object_name)
)

 # Set the value of the related field to the value of the related object's related field
 for index, field in enumerate(self.related.field.local_related_fields):
 setattr(value, field.attname, related_pk[index])

 # Since we already know what the related object is, seed the related
 # object caches now, too. This avoids another db hit if you get the
 # object you just set.
 setattr(instance, self.cache_name, value)
 setattr(value, self.related.field.get_cache_name(), instance)

class ReverseSingleRelatedObjectDescriptor(object):
 # This class provides the functionality that makes the related-object
 # managers available as attributes on a model class, for fields that have
 # a single "remote" value, on the class that defines the related field.
 # In the example "choice.poll", the poll attribute is a
 # ReverseSingleRelatedObjectDescriptor instance.
 def __init__(self, field_with_rel):
 self.field = field_with_rel
 self.cache_name = self.field.get_cache_name()

 @cached_property
 def RelatedObjectDoesNotExist(self):
 # The exception can't be created at initialization time since the
 # related model might not be resolved yet; `rel.to` might still be
 # a string model reference.
 return type(
 str('RelatedObjectDoesNotExist'),
 (self.field.rel.to.DoesNotExist, AttributeError),
 {}
)

 def is_cached(self, instance):
 return hasattr(instance, self.cache_name)

 def get_queryset(self, **hints):
 manager = self.field.rel.to._default_manager
 # If the related manager indicates that it should be used for
 # related fields, respect that.
 if not getattr(manager, 'use_for_related_fields', False):
 manager = self.field.rel.to._base_manager
 return manager.db_manager(hints=hints).all()

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = self.get_queryset()
 queryset._add_hints(instance=instances[0])

 rel_obj_attr = self.field.get_foreign_related_value
 instance_attr = self.field.get_local_related_value
 instances_dict = {instance_attr(inst): inst for inst in instances}
 related_field = self.field.foreign_related_fields[0]

 # FIXME: This will need to be revisited when we introduce support for
 # composite fields. In the meantime we take this practical approach to
 # solve a regression on 1.6 when the reverse manager in hidden
 # (related_name ends with a '+'). Refs #21410.
 # The check for len(...) == 1 is a special case that allows the query
 # to be join-less and smaller. Refs #21760.
 if self.field.rel.is_hidden() or len(self.field.foreign_related_fields) == 1:
 query = {'%s__in' % related_field.name: set(instance_attr(inst)[0] for inst in instances)}
 else:
 query = {'%s__in' % self.field.related_query_name(): instances}
 queryset = queryset.filter(**query)

 # Since we're going to assign directly in the cache,
 # we must manage the reverse relation cache manually.
 if not self.field.rel.multiple:
 rel_obj_cache_name = self.field.rel.get_cache_name()
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, rel_obj_cache_name, instance)
 return queryset, rel_obj_attr, instance_attr, True, self.cache_name

 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self
 try:
 rel_obj = getattr(instance, self.cache_name)
 except AttributeError:
 val = self.field.get_local_related_value(instance)
 if None in val:
 rel_obj = None
 else:
 params = {
 rh_field.attname: getattr(instance, lh_field.attname)
 for lh_field, rh_field in self.field.related_fields}
 qs = self.get_queryset(instance=instance)
 extra_filter = self.field.get_extra_descriptor_filter(instance)
 if isinstance(extra_filter, dict):
 params.update(extra_filter)
 qs = qs.filter(**params)
 else:
 qs = qs.filter(extra_filter, **params)
 # Assuming the database enforces foreign keys, this won't fail.
 rel_obj = qs.get()
 if not self.field.rel.multiple:
 setattr(rel_obj, self.field.rel.get_cache_name(), instance)
 setattr(instance, self.cache_name, rel_obj)
 if rel_obj is None and not self.field.null:
 raise self.RelatedObjectDoesNotExist(
 "%s has no %s." % (self.field.model.__name__, self.field.name)
)
 else:
 return rel_obj

 def __set__(self, instance, value):
 # If null=True, we can assign null here, but otherwise the value needs
 # to be an instance of the related class.
 if value is None and self.field.null is False:
 raise ValueError(
 'Cannot assign None: "%s.%s" does not allow null values.' %
 (instance._meta.object_name, self.field.name)
)
 elif value is not None and not isinstance(value, self.field.rel.to):
 raise ValueError(
 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (
 value,
 instance._meta.object_name,
 self.field.name,
 self.field.rel.to._meta.object_name,
)
)
 elif value is not None:
 if instance._state.db is None:
 instance._state.db = router.db_for_write(instance.__class__, instance=value)
 elif value._state.db is None:
 value._state.db = router.db_for_write(value.__class__, instance=instance)
 elif value._state.db is not None and instance._state.db is not None:
 if not router.allow_relation(value, instance):
 raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value)

 # If we're setting the value of a OneToOneField to None, we need to clear
 # out the cache on any old related object. Otherwise, deleting the
 # previously-related object will also cause this object to be deleted,
 # which is wrong.
 if value is None:
 # Look up the previously-related object, which may still be available
 # since we've not yet cleared out the related field.
 # Use the cache directly, instead of the accessor; if we haven't
 # populated the cache, then we don't care - we're only accessing
 # the object to invalidate the accessor cache, so there's no
 # need to populate the cache just to expire it again.
 related = getattr(instance, self.cache_name, None)

 # If we've got an old related object, we need to clear out its
 # cache. This cache also might not exist if the related object
 # hasn't been accessed yet.
 if related is not None:
 setattr(related, self.field.rel.get_cache_name(), None)

 for lh_field, rh_field in self.field.related_fields:
 setattr(instance, lh_field.attname, None)

 # Set the values of the related field.
 else:
 for lh_field, rh_field in self.field.related_fields:
 pk = value._get_pk_val()
 if not self.field.allow_unsaved_instance_assignment and pk is None:
 raise ValueError(
 'Cannot assign "%r": "%s" instance isn\'t saved in the database.' %
 (value, self.field.rel.to._meta.object_name)
)
 setattr(instance, lh_field.attname, getattr(value, rh_field.attname))

 # Since we already know what the related object is, seed the related
 # object caches now, too. This avoids another db hit if you get the
 # object you just set.
 setattr(instance, self.cache_name, value)
 if value is not None and not self.field.rel.multiple:
 setattr(value, self.field.rel.get_cache_name(), instance)

def create_foreign_related_manager(superclass, rel_field, rel_model):
 class RelatedManager(superclass):
 def __init__(self, instance):
 super(RelatedManager, self).__init__()
 self.instance = instance
 self.core_filters = {rel_field.name: instance}
 self.model = rel_model

 def __call__(self, **kwargs):
 # We use **kwargs rather than a kwarg argument to enforce the
 # `manager='manager_name'` syntax.
 manager = getattr(self.model, kwargs.pop('manager'))
 manager_class = create_foreign_related_manager(manager.__class__, rel_field, rel_model)
 return manager_class(self.instance)
 do_not_call_in_templates = True

 def get_queryset(self):
 try:
 return self.instance._prefetched_objects_cache[rel_field.related_query_name()]
 except (AttributeError, KeyError):
 db = self._db or router.db_for_read(self.model, instance=self.instance)
 empty_strings_as_null = connections[db].features.interprets_empty_strings_as_nulls
 qs = super(RelatedManager, self).get_queryset()
 qs._add_hints(instance=self.instance)
 if self._db:
 qs = qs.using(self._db)
 qs = qs.filter(**self.core_filters)
 for field in rel_field.foreign_related_fields:
 val = getattr(self.instance, field.attname)
 if val is None or (val == '' and empty_strings_as_null):
 return qs.none()
 qs._known_related_objects = {rel_field: {self.instance.pk: self.instance}}
 return qs

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = super(RelatedManager, self).get_queryset()

 queryset._add_hints(instance=instances[0])
 queryset = queryset.using(queryset._db or self._db)

 rel_obj_attr = rel_field.get_local_related_value
 instance_attr = rel_field.get_foreign_related_value
 instances_dict = {instance_attr(inst): inst for inst in instances}
 query = {'%s__in' % rel_field.name: instances}
 queryset = queryset.filter(**query)

 # Since we just bypassed this class' get_queryset(), we must manage
 # the reverse relation manually.
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, rel_field.name, instance)
 cache_name = rel_field.related_query_name()
 return queryset, rel_obj_attr, instance_attr, False, cache_name

 def add(self, *objs):
 objs = list(objs)
 db = router.db_for_write(self.model, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 for obj in objs:
 if not isinstance(obj, self.model):
 raise TypeError("'%s' instance expected, got %r" %
 (self.model._meta.object_name, obj))
 setattr(obj, rel_field.name, self.instance)
 obj.save()
 add.alters_data = True

 def create(self, **kwargs):
 kwargs[rel_field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).create(**kwargs)
 create.alters_data = True

 def get_or_create(self, **kwargs):
 kwargs[rel_field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).get_or_create(**kwargs)
 get_or_create.alters_data = True

 def update_or_create(self, **kwargs):
 kwargs[rel_field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).update_or_create(**kwargs)
 update_or_create.alters_data = True

 # remove() and clear() are only provided if the ForeignKey can have a value of null.
 if rel_field.null:
 def remove(self, *objs, **kwargs):
 if not objs:
 return
 bulk = kwargs.pop('bulk', True)
 val = rel_field.get_foreign_related_value(self.instance)
 old_ids = set()
 for obj in objs:
 # Is obj actually part of this descriptor set?
 if rel_field.get_local_related_value(obj) == val:
 old_ids.add(obj.pk)
 else:
 raise rel_field.rel.to.DoesNotExist("%r is not related to %r." % (obj, self.instance))
 self._clear(self.filter(pk__in=old_ids), bulk)
 remove.alters_data = True

 def clear(self, **kwargs):
 bulk = kwargs.pop('bulk', True)
 self._clear(self, bulk)
 clear.alters_data = True

 def _clear(self, queryset, bulk):
 db = router.db_for_write(self.model, instance=self.instance)
 queryset = queryset.using(db)
 if bulk:
 # `QuerySet.update()` is intrinsically atomic.
 queryset.update(**{rel_field.name: None})
 else:
 with transaction.atomic(using=db, savepoint=False):
 for obj in queryset:
 setattr(obj, rel_field.name, None)
 obj.save(update_fields=[rel_field.name])
 _clear.alters_data = True

 return RelatedManager

class ForeignRelatedObjectsDescriptor(object):
 # This class provides the functionality that makes the related-object
 # managers available as attributes on a model class, for fields that have
 # multiple "remote" values and have a ForeignKey pointed at them by
 # some other model. In the example "poll.choice_set", the choice_set
 # attribute is a ForeignRelatedObjectsDescriptor instance.
 def __init__(self, related):
 self.related = related # RelatedObject instance

 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self

 return self.related_manager_cls(instance)

 def __set__(self, instance, value):
 # Force evaluation of `value` in case it's a queryset whose
 # value could be affected by `manager.clear()`. Refs #19816.
 value = tuple(value)

 manager = self.__get__(instance)
 db = router.db_for_write(manager.model, instance=manager.instance)
 with transaction.atomic(using=db, savepoint=False):
 # If the foreign key can support nulls, then completely clear the related set.
 # Otherwise, just move the named objects into the set.
 if self.related.field.null:
 manager.clear()
 manager.add(*value)

 @cached_property
 def related_manager_cls(self):
 # Dynamically create a class that subclasses the related model's default
 # manager.
 return create_foreign_related_manager(
 self.related.related_model._default_manager.__class__,
 self.related.field,
 self.related.related_model,
)

def create_many_related_manager(superclass, rel):
 """Creates a manager that subclasses 'superclass' (which is a Manager)
 and adds behavior for many-to-many related objects."""
 class ManyRelatedManager(superclass):
 def __init__(self, model=None, query_field_name=None, instance=None, symmetrical=None,
 source_field_name=None, target_field_name=None, reverse=False,
 through=None, prefetch_cache_name=None):
 super(ManyRelatedManager, self).__init__()
 self.model = model
 self.query_field_name = query_field_name

 source_field = through._meta.get_field(source_field_name)
 source_related_fields = source_field.related_fields

 self.core_filters = {}
 for lh_field, rh_field in source_related_fields:
 self.core_filters['%s__%s' % (query_field_name, rh_field.name)] = getattr(instance, rh_field.attname)

 self.instance = instance
 self.symmetrical = symmetrical
 self.source_field = source_field
 self.target_field = through._meta.get_field(target_field_name)
 self.source_field_name = source_field_name
 self.target_field_name = target_field_name
 self.reverse = reverse
 self.through = through
 self.prefetch_cache_name = prefetch_cache_name
 self.related_val = source_field.get_foreign_related_value(instance)
 if None in self.related_val:
 raise ValueError('"%r" needs to have a value for field "%s" before '
 'this many-to-many relationship can be used.' %
 (instance, source_field_name))
 # Even if this relation is not to pk, we require still pk value.
 # The wish is that the instance has been already saved to DB,
 # although having a pk value isn't a guarantee of that.
 if instance.pk is None:
 raise ValueError("%r instance needs to have a primary key value before "
 "a many-to-many relationship can be used." %
 instance.__class__.__name__)

 def __call__(self, **kwargs):
 # We use **kwargs rather than a kwarg argument to enforce the
 # `manager='manager_name'` syntax.
 manager = getattr(self.model, kwargs.pop('manager'))
 manager_class = create_many_related_manager(manager.__class__, rel)
 return manager_class(
 model=self.model,
 query_field_name=self.query_field_name,
 instance=self.instance,
 symmetrical=self.symmetrical,
 source_field_name=self.source_field_name,
 target_field_name=self.target_field_name,
 reverse=self.reverse,
 through=self.through,
 prefetch_cache_name=self.prefetch_cache_name,
)
 do_not_call_in_templates = True

 def _build_remove_filters(self, removed_vals):
 filters = Q(**{self.source_field_name: self.related_val})
 # No need to add a subquery condition if removed_vals is a QuerySet without
 # filters.
 removed_vals_filters = (not isinstance(removed_vals, QuerySet) or
 removed_vals._has_filters())
 if removed_vals_filters:
 filters &= Q(**{'%s__in' % self.target_field_name: removed_vals})
 if self.symmetrical:
 symmetrical_filters = Q(**{self.target_field_name: self.related_val})
 if removed_vals_filters:
 symmetrical_filters &= Q(
 **{'%s__in' % self.source_field_name: removed_vals})
 filters |= symmetrical_filters
 return filters

 def get_queryset(self):
 try:
 return self.instance._prefetched_objects_cache[self.prefetch_cache_name]
 except (AttributeError, KeyError):
 qs = super(ManyRelatedManager, self).get_queryset()
 qs._add_hints(instance=self.instance)
 if self._db:
 qs = qs.using(self._db)
 return qs._next_is_sticky().filter(**self.core_filters)

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = super(ManyRelatedManager, self).get_queryset()

 queryset._add_hints(instance=instances[0])
 queryset = queryset.using(queryset._db or self._db)

 query = {'%s__in' % self.query_field_name: instances}
 queryset = queryset._next_is_sticky().filter(**query)

 # M2M: need to annotate the query in order to get the primary model
 # that the secondary model was actually related to. We know that
 # there will already be a join on the join table, so we can just add
 # the select.

 # For non-autocreated 'through' models, can't assume we are
 # dealing with PK values.
 fk = self.through._meta.get_field(self.source_field_name)
 join_table = self.through._meta.db_table
 connection = connections[queryset.db]
 qn = connection.ops.quote_name
 queryset = queryset.extra(select={
 '_prefetch_related_val_%s' % f.attname:
 '%s.%s' % (qn(join_table), qn(f.column)) for f in fk.local_related_fields})
 return (
 queryset,
 lambda result: tuple(
 getattr(result, '_prefetch_related_val_%s' % f.attname)
 for f in fk.local_related_fields
),
 lambda inst: tuple(getattr(inst, f.attname) for f in fk.foreign_related_fields),
 False,
 self.prefetch_cache_name,
)

 def add(self, *objs):
 if not rel.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use add() on a ManyToManyField which specifies an "
 "intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)

 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 self._add_items(self.source_field_name, self.target_field_name, *objs)

 # If this is a symmetrical m2m relation to self, add the mirror entry in the m2m table
 if self.symmetrical:
 self._add_items(self.target_field_name, self.source_field_name, *objs)
 add.alters_data = True

 def remove(self, *objs):
 if not rel.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use remove() on a ManyToManyField which specifies "
 "an intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)
 self._remove_items(self.source_field_name, self.target_field_name, *objs)
 remove.alters_data = True

 def clear(self):
 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 signals.m2m_changed.send(sender=self.through, action="pre_clear",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=None, using=db)

 filters = self._build_remove_filters(super(ManyRelatedManager, self).get_queryset().using(db))
 self.through._default_manager.using(db).filter(filters).delete()

 signals.m2m_changed.send(sender=self.through, action="post_clear",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=None, using=db)
 clear.alters_data = True

 def create(self, **kwargs):
 # This check needs to be done here, since we can't later remove this
 # from the method lookup table, as we do with add and remove.
 if not self.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use create() on a ManyToManyField which specifies "
 "an intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 new_obj = super(ManyRelatedManager, self.db_manager(db)).create(**kwargs)
 self.add(new_obj)
 return new_obj
 create.alters_data = True

 def get_or_create(self, **kwargs):
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 obj, created = super(ManyRelatedManager, self.db_manager(db)).get_or_create(**kwargs)
 # We only need to add() if created because if we got an object back
 # from get() then the relationship already exists.
 if created:
 self.add(obj)
 return obj, created
 get_or_create.alters_data = True

 def update_or_create(self, **kwargs):
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 obj, created = super(ManyRelatedManager, self.db_manager(db)).update_or_create(**kwargs)
 # We only need to add() if created because if we got an object back
 # from get() then the relationship already exists.
 if created:
 self.add(obj)
 return obj, created
 update_or_create.alters_data = True

 def _add_items(self, source_field_name, target_field_name, *objs):
 # source_field_name: the PK fieldname in join table for the source object
 # target_field_name: the PK fieldname in join table for the target object
 # *objs - objects to add. Either object instances, or primary keys of object instances.

 # If there aren't any objects, there is nothing to do.
 from django.db.models import Model
 if objs:
 new_ids = set()
 for obj in objs:
 if isinstance(obj, self.model):
 if not router.allow_relation(obj, self.instance):
 raise ValueError(
 'Cannot add "%r": instance is on database "%s", value is on database "%s"' %
 (obj, self.instance._state.db, obj._state.db)
)
 fk_val = self.through._meta.get_field(
 target_field_name).get_foreign_related_value(obj)[0]
 if fk_val is None:
 raise ValueError(
 'Cannot add "%r": the value for field "%s" is None' %
 (obj, target_field_name)
)
 new_ids.add(fk_val)
 elif isinstance(obj, Model):
 raise TypeError(
 "'%s' instance expected, got %r" %
 (self.model._meta.object_name, obj)
)
 else:
 new_ids.add(obj)

 db = router.db_for_write(self.through, instance=self.instance)
 vals = (self.through._default_manager.using(db)
 .values_list(target_field_name, flat=True)
 .filter(**{
 source_field_name: self.related_val[0],
 '%s__in' % target_field_name: new_ids,
 }))
 new_ids = new_ids - set(vals)

 with transaction.atomic(using=db, savepoint=False):
 if self.reverse or source_field_name == self.source_field_name:
 # Don't send the signal when we are inserting the
 # duplicate data row for symmetrical reverse entries.
 signals.m2m_changed.send(sender=self.through, action='pre_add',
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=new_ids, using=db)

 # Add the ones that aren't there already
 self.through._default_manager.using(db).bulk_create([
 self.through(**{
 '%s_id' % source_field_name: self.related_val[0],
 '%s_id' % target_field_name: obj_id,
 })
 for obj_id in new_ids
])

 if self.reverse or source_field_name == self.source_field_name:
 # Don't send the signal when we are inserting the
 # duplicate data row for symmetrical reverse entries.
 signals.m2m_changed.send(sender=self.through, action='post_add',
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=new_ids, using=db)

 def _remove_items(self, source_field_name, target_field_name, *objs):
 # source_field_name: the PK colname in join table for the source object
 # target_field_name: the PK colname in join table for the target object
 # *objs - objects to remove
 if not objs:
 return

 # Check that all the objects are of the right type
 old_ids = set()
 for obj in objs:
 if isinstance(obj, self.model):
 fk_val = self.target_field.get_foreign_related_value(obj)[0]
 old_ids.add(fk_val)
 else:
 old_ids.add(obj)

 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 # Send a signal to the other end if need be.
 signals.m2m_changed.send(sender=self.through, action="pre_remove",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=old_ids, using=db)
 target_model_qs = super(ManyRelatedManager, self).get_queryset()
 if target_model_qs._has_filters():
 old_vals = target_model_qs.using(db).filter(**{
 '%s__in' % self.target_field.related_field.attname: old_ids})
 else:
 old_vals = old_ids
 filters = self._build_remove_filters(old_vals)
 self.through._default_manager.using(db).filter(filters).delete()

 signals.m2m_changed.send(sender=self.through, action="post_remove",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=old_ids, using=db)

 return ManyRelatedManager

class ManyRelatedObjectsDescriptor(object):
 # This class provides the functionality that makes the related-object
 # managers available as attributes on a model class, for fields that have
 # multiple "remote" values and have a ManyToManyField pointed at them by
 # some other model (rather than having a ManyToManyField themselves).
 # In the example "publication.article_set", the article_set attribute is a
 # ManyRelatedObjectsDescriptor instance.
 def __init__(self, related):
 self.related = related # RelatedObject instance

 @cached_property
 def related_manager_cls(self):
 # Dynamically create a class that subclasses the related
 # model's default manager.
 return create_many_related_manager(
 self.related.related_model._default_manager.__class__,
 self.related.field.rel
)

 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self

 rel_model = self.related.related_model

 manager = self.related_manager_cls(
 model=rel_model,
 query_field_name=self.related.field.name,
 prefetch_cache_name=self.related.field.related_query_name(),
 instance=instance,
 symmetrical=False,
 source_field_name=self.related.field.m2m_reverse_field_name(),
 target_field_name=self.related.field.m2m_field_name(),
 reverse=True,
 through=self.related.field.rel.through,
)

 return manager

 def __set__(self, instance, value):
 if not self.related.field.rel.through._meta.auto_created:
 opts = self.related.field.rel.through._meta
 raise AttributeError(
 "Cannot set values on a ManyToManyField which specifies an "
 "intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name)
)

 # Force evaluation of `value` in case it's a queryset whose
 # value could be affected by `manager.clear()`. Refs #19816.
 value = tuple(value)

 manager = self.__get__(instance)
 db = router.db_for_write(manager.through, instance=manager.instance)
 with transaction.atomic(using=db, savepoint=False):
 manager.clear()
 manager.add(*value)

class ReverseManyRelatedObjectsDescriptor(object):
 # This class provides the functionality that makes the related-object
 # managers available as attributes on a model class, for fields that have
 # multiple "remote" values and have a ManyToManyField defined in their
 # model (rather than having another model pointed *at* them).
 # In the example "article.publications", the publications attribute is a
 # ReverseManyRelatedObjectsDescriptor instance.
 def __init__(self, m2m_field):
 self.field = m2m_field

 @property
 def through(self):
 # through is provided so that you have easy access to the through
 # model (Book.authors.through) for inlines, etc. This is done as
 # a property to ensure that the fully resolved value is returned.
 return self.field.rel.through

 @cached_property
 def related_manager_cls(self):
 # Dynamically create a class that subclasses the related model's
 # default manager.
 return create_many_related_manager(
 self.field.rel.to._default_manager.__class__,
 self.field.rel
)

 def __get__(self, instance, instance_type=None):
 if instance is None:
 return self

 manager = self.related_manager_cls(
 model=self.field.rel.to,
 query_field_name=self.field.related_query_name(),
 prefetch_cache_name=self.field.name,
 instance=instance,
 symmetrical=self.field.rel.symmetrical,
 source_field_name=self.field.m2m_field_name(),
 target_field_name=self.field.m2m_reverse_field_name(),
 reverse=False,
 through=self.field.rel.through,
)

 return manager

 def __set__(self, instance, value):
 if not self.field.rel.through._meta.auto_created:
 opts = self.field.rel.through._meta
 raise AttributeError(
 "Cannot set values on a ManyToManyField which specifies an "
 "intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name)
)

 # Force evaluation of `value` in case it's a queryset whose
 # value could be affected by `manager.clear()`. Refs #19816.
 value = tuple(value)

 manager = self.__get__(instance)
 db = router.db_for_write(manager.through, instance=manager.instance)
 with transaction.atomic(using=db, savepoint=False):
 manager.clear()
 manager.add(*value)

class ForeignObjectRel(object):
 # Field flags
 auto_created = True
 concrete = False
 editable = False
 is_relation = True

 def __init__(self, field, to, related_name=None, limit_choices_to=None,
 parent_link=False, on_delete=None, related_query_name=None):
 self.field = field
 self.to = to
 self.related_name = related_name
 self.related_query_name = related_query_name
 self.limit_choices_to = {} if limit_choices_to is None else limit_choices_to
 self.multiple = True
 self.parent_link = parent_link
 self.on_delete = on_delete
 self.symmetrical = False

 # Some of the following cached_properties can't be initialized in
 # __init__ as the field doesn't have its model yet. Calling these methods
 # before field.contribute_to_class() has been called will result in
 # AttributeError
 @cached_property
 def model(self):
 return self.to

 @cached_property
 def hidden(self):
 return self.is_hidden()

 @cached_property
 def name(self):
 return self.field.related_query_name()

 @cached_property
 def related_model(self):
 if not self.field.model:
 raise AttributeError(
 "This property can't be accessed before self.field.contribute_to_class has been called.")
 return self.field.model

 @cached_property
 def many_to_many(self):
 return self.field.many_to_many

 @cached_property
 def many_to_one(self):
 return self.field.one_to_many

 @cached_property
 def one_to_many(self):
 return self.field.many_to_one

 @cached_property
 def one_to_one(self):
 return self.field.one_to_one

 def __repr__(self):
 return '<%s: %s.%s>' % (
 type(self).__name__,
 self.related_model._meta.app_label,
 self.related_model._meta.model_name,
)

 def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH,
 limit_to_currently_related=False):
 """
 Returns choices with a default blank choices included, for use as
 SelectField choices for this field.

 Analog of django.db.models.fields.Field.get_choices(), provided
 initially for utilization by RelatedFieldListFilter.
 """
 first_choice = blank_choice if include_blank else []
 queryset = self.related_model._default_manager.all()
 if limit_to_currently_related:
 queryset = queryset.complex_filter(
 {'%s__isnull' % self.related_model._meta.model_name: False}
)
 lst = [(x._get_pk_val(), smart_text(x)) for x in queryset]
 return first_choice + lst

 def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False):
 # Defer to the actual field definition for db prep
 return self.field.get_db_prep_lookup(lookup_type, value, connection=connection, prepared=prepared)

 def is_hidden(self):
 "Should the related object be hidden?"
 return self.related_name is not None and self.related_name[-1] == '+'

 def get_joining_columns(self):
 return self.field.get_reverse_joining_columns()

 def get_extra_restriction(self, where_class, alias, related_alias):
 return self.field.get_extra_restriction(where_class, related_alias, alias)

 def set_field_name(self):
 """
 Sets the related field's name, this is not available until later stages
 of app loading, so set_field_name is called from
 set_attributes_from_rel()
 """
 # By default foreign object doesn't relate to any remote field (for
 # example custom multicolumn joins currently have no remote field).
 self.field_name = None

 def get_accessor_name(self, model=None):
 # This method encapsulates the logic that decides what name to give an
 # accessor descriptor that retrieves related many-to-one or
 # many-to-many objects. It uses the lower-cased object_name + "_set",
 # but this can be overridden with the "related_name" option.
 # Due to backwards compatibility ModelForms need to be able to provide
 # an alternate model. See BaseInlineFormSet.get_default_prefix().
 opts = model._meta if model else self.related_model._meta
 model = model or self.related_model
 if self.multiple:
 # If this is a symmetrical m2m relation on self, there is no reverse accessor.
 if self.symmetrical and model == self.to:
 return None
 if self.related_name:
 return self.related_name
 if opts.default_related_name:
 return opts.default_related_name % {
 'model_name': opts.model_name.lower(),
 'app_label': opts.app_label.lower(),
 }
 return opts.model_name + ('_set' if self.multiple else '')

 def get_cache_name(self):
 return "_%s_cache" % self.get_accessor_name()

 def get_path_info(self):
 return self.field.get_reverse_path_info()

class ManyToOneRel(ForeignObjectRel):
 def __init__(self, field, to, field_name, related_name=None, limit_choices_to=None,
 parent_link=False, on_delete=None, related_query_name=None):
 super(ManyToOneRel, self).__init__(
 field, to, related_name=related_name, limit_choices_to=limit_choices_to,
 parent_link=parent_link, on_delete=on_delete, related_query_name=related_query_name)
 self.field_name = field_name

 def get_related_field(self):
 """
 Returns the Field in the 'to' object to which this relationship is
 tied.
 """
 field = self.to._meta.get_field(self.field_name)
 if not field.concrete:
 raise FieldDoesNotExist("No related field named '%s'" %
 self.field_name)
 return field

 def set_field_name(self):
 self.field_name = self.field_name or self.to._meta.pk.name

class OneToOneRel(ManyToOneRel):
 def __init__(self, field, to, field_name, related_name=None, limit_choices_to=None,
 parent_link=False, on_delete=None, related_query_name=None):
 super(OneToOneRel, self).__init__(field, to, field_name,
 related_name=related_name, limit_choices_to=limit_choices_to,
 parent_link=parent_link, on_delete=on_delete, related_query_name=related_query_name)
 self.multiple = False

class ManyToManyRel(ForeignObjectRel):
 def __init__(self, field, to, related_name=None, limit_choices_to=None,
 symmetrical=True, through=None, through_fields=None,
 db_constraint=True, related_query_name=None):
 if through and not db_constraint:
 raise ValueError("Can't supply a through model and db_constraint=False")
 if through_fields and not through:
 raise ValueError("Cannot specify through_fields without a through model")
 super(ManyToManyRel, self).__init__(
 field, to, related_name=related_name,
 limit_choices_to=limit_choices_to, related_query_name=related_query_name)
 self.symmetrical = symmetrical
 self.multiple = True
 self.through = through
 self.through_fields = through_fields
 self.db_constraint = db_constraint

 def is_hidden(self):
 "Should the related object be hidden?"
 return self.related_name is not None and self.related_name[-1] == '+'

 def get_related_field(self):
 """
 Returns the field in the 'to' object to which this relationship is tied.
 Provided for symmetry with ManyToOneRel.
 """
 opts = self.through._meta
 if self.through_fields:
 field = opts.get_field(self.through_fields[0])
 else:
 for field in opts.fields:
 rel = getattr(field, 'rel', None)
 if rel and rel.to == self.to:
 break
 return field.foreign_related_fields[0]

class ForeignObject(RelatedField):
 # Field flags
 many_to_many = False
 many_to_one = True
 one_to_many = False
 one_to_one = False

 allow_unsaved_instance_assignment = False
 requires_unique_target = True
 related_accessor_class = ForeignRelatedObjectsDescriptor

 def __init__(self, to, from_fields, to_fields, swappable=True, **kwargs):
 self.from_fields = from_fields
 self.to_fields = to_fields
 self.swappable = swappable

 if 'rel' not in kwargs:
 kwargs['rel'] = ForeignObjectRel(
 self, to,
 related_name=kwargs.pop('related_name', None),
 related_query_name=kwargs.pop('related_query_name', None),
 limit_choices_to=kwargs.pop('limit_choices_to', None),
 parent_link=kwargs.pop('parent_link', False),
 on_delete=kwargs.pop('on_delete', CASCADE),
)
 kwargs['verbose_name'] = kwargs.get('verbose_name', None)

 super(ForeignObject, self).__init__(**kwargs)

 def check(self, **kwargs):
 errors = super(ForeignObject, self).check(**kwargs)
 errors.extend(self._check_unique_target())
 return errors

 def _check_unique_target(self):
 rel_is_string = isinstance(self.rel.to, six.string_types)
 if rel_is_string or not self.requires_unique_target:
 return []

 # Skip if the
 try:
 self.foreign_related_fields
 except FieldDoesNotExist:
 return []

 try:
 self.rel
 except AttributeError:
 return []

 has_unique_field = any(rel_field.unique
 for rel_field in self.foreign_related_fields)
 if not has_unique_field and len(self.foreign_related_fields) > 1:
 field_combination = ', '.join("'%s'" % rel_field.name
 for rel_field in self.foreign_related_fields)
 model_name = self.rel.to.__name__
 return [
 checks.Error(
 "None of the fields %s on model '%s' have a unique=True constraint."
 % (field_combination, model_name),
 hint=None,
 obj=self,
 id='fields.E310',
)
]
 elif not has_unique_field:
 field_name = self.foreign_related_fields[0].name
 model_name = self.rel.to.__name__
 return [
 checks.Error(
 ("'%s.%s' must set unique=True "
 "because it is referenced by a foreign key.") % (model_name, field_name),
 hint=None,
 obj=self,
 id='fields.E311',
)
]
 else:
 return []

 def deconstruct(self):
 name, path, args, kwargs = super(ForeignObject, self).deconstruct()
 kwargs['from_fields'] = self.from_fields
 kwargs['to_fields'] = self.to_fields
 if self.rel.related_name is not None:
 kwargs['related_name'] = self.rel.related_name
 if self.rel.related_query_name is not None:
 kwargs['related_query_name'] = self.rel.related_query_name
 if self.rel.on_delete != CASCADE:
 kwargs['on_delete'] = self.rel.on_delete
 if self.rel.parent_link:
 kwargs['parent_link'] = self.rel.parent_link
 # Work out string form of "to"
 if isinstance(self.rel.to, six.string_types):
 kwargs['to'] = self.rel.to
 else:
 kwargs['to'] = "%s.%s" % (self.rel.to._meta.app_label, self.rel.to._meta.object_name)
 # If swappable is True, then see if we're actually pointing to the target
 # of a swap.
 swappable_setting = self.swappable_setting
 if swappable_setting is not None:
 # If it's already a settings reference, error
 if hasattr(kwargs['to'], "setting_name"):
 if kwargs['to'].setting_name != swappable_setting:
 raise ValueError(
 "Cannot deconstruct a ForeignKey pointing to a model "
 "that is swapped in place of more than one model (%s and %s)"
 % (kwargs['to'].setting_name, swappable_setting)
)
 # Set it
 from django.db.migrations.writer import SettingsReference
 kwargs['to'] = SettingsReference(
 kwargs['to'],
 swappable_setting,
)
 return name, path, args, kwargs

 def resolve_related_fields(self):
 if len(self.from_fields) < 1 or len(self.from_fields) != len(self.to_fields):
 raise ValueError('Foreign Object from and to fields must be the same non-zero length')
 if isinstance(self.rel.to, six.string_types):
 raise ValueError('Related model %r cannot be resolved' % self.rel.to)
 related_fields = []
 for index in range(len(self.from_fields)):
 from_field_name = self.from_fields[index]
 to_field_name = self.to_fields[index]
 from_field = (self if from_field_name == 'self'
 else self.opts.get_field(from_field_name))
 to_field = (self.rel.to._meta.pk if to_field_name is None
 else self.rel.to._meta.get_field(to_field_name))
 related_fields.append((from_field, to_field))
 return related_fields

 @property
 def related_fields(self):
 if not hasattr(self, '_related_fields'):
 self._related_fields = self.resolve_related_fields()
 return self._related_fields

 @property
 def reverse_related_fields(self):
 return [(rhs_field, lhs_field) for lhs_field, rhs_field in self.related_fields]

 @property
 def local_related_fields(self):
 return tuple(lhs_field for lhs_field, rhs_field in self.related_fields)

 @property
 def foreign_related_fields(self):
 return tuple(rhs_field for lhs_field, rhs_field in self.related_fields)

 def get_local_related_value(self, instance):
 return self.get_instance_value_for_fields(instance, self.local_related_fields)

 def get_foreign_related_value(self, instance):
 return self.get_instance_value_for_fields(instance, self.foreign_related_fields)

 @staticmethod
 def get_instance_value_for_fields(instance, fields):
 ret = []
 opts = instance._meta
 for field in fields:
 # Gotcha: in some cases (like fixture loading) a model can have
 # different values in parent_ptr_id and parent's id. So, use
 # instance.pk (that is, parent_ptr_id) when asked for instance.id.
 if field.primary_key:
 possible_parent_link = opts.get_ancestor_link(field.model)
 if (not possible_parent_link or
 possible_parent_link.primary_key or
 possible_parent_link.model._meta.abstract):
 ret.append(instance.pk)
 continue
 ret.append(getattr(instance, field.attname))
 return tuple(ret)

 def get_attname_column(self):
 attname, column = super(ForeignObject, self).get_attname_column()
 return attname, None

 def get_joining_columns(self, reverse_join=False):
 source = self.reverse_related_fields if reverse_join else self.related_fields
 return tuple((lhs_field.column, rhs_field.column) for lhs_field, rhs_field in source)

 def get_reverse_joining_columns(self):
 return self.get_joining_columns(reverse_join=True)

 def get_extra_descriptor_filter(self, instance):
 """
 Returns an extra filter condition for related object fetching when
 user does 'instance.fieldname', that is the extra filter is used in
 the descriptor of the field.

 The filter should be either a dict usable in .filter(**kwargs) call or
 a Q-object. The condition will be ANDed together with the relation's
 joining columns.

 A parallel method is get_extra_restriction() which is used in
 JOIN and subquery conditions.
 """
 return {}

 def get_extra_restriction(self, where_class, alias, related_alias):
 """
 Returns a pair condition used for joining and subquery pushdown. The
 condition is something that responds to as_sql(compiler, connection)
 method.

 Note that currently referring both the 'alias' and 'related_alias'
 will not work in some conditions, like subquery pushdown.

 A parallel method is get_extra_descriptor_filter() which is used in
 instance.fieldname related object fetching.
 """
 return None

 def get_path_info(self):
 """
 Get path from this field to the related model.
 """
 opts = self.rel.to._meta
 from_opts = self.model._meta
 return [PathInfo(from_opts, opts, self.foreign_related_fields, self, False, True)]

 def get_reverse_path_info(self):
 """
 Get path from the related model to this field's model.
 """
 opts = self.model._meta
 from_opts = self.rel.to._meta
 pathinfos = [PathInfo(from_opts, opts, (opts.pk,), self.rel, not self.unique, False)]
 return pathinfos

 def get_lookup_constraint(self, constraint_class, alias, targets, sources, lookups,
 raw_value):
 from django.db.models.sql.where import SubqueryConstraint, AND, OR
 root_constraint = constraint_class()
 assert len(targets) == len(sources)
 if len(lookups) > 1:
 raise exceptions.FieldError('Relation fields do not support nested lookups')
 lookup_type = lookups[0]

 def get_normalized_value(value):
 from django.db.models import Model
 if isinstance(value, Model):
 value_list = []
 for source in sources:
 # Account for one-to-one relations when sent a different model
 while not isinstance(value, source.model) and source.rel:
 source = source.rel.to._meta.get_field(source.rel.field_name)
 value_list.append(getattr(value, source.attname))
 return tuple(value_list)
 elif not isinstance(value, tuple):
 return (value,)
 return value

 is_multicolumn = len(self.related_fields) > 1
 if (hasattr(raw_value, '_as_sql') or
 hasattr(raw_value, 'get_compiler')):
 root_constraint.add(SubqueryConstraint(alias, [target.column for target in targets],
 [source.name for source in sources], raw_value),
 AND)
 elif lookup_type == 'isnull':
 root_constraint.add(IsNull(targets[0].get_col(alias, sources[0]), raw_value), AND)
 elif (lookup_type == 'exact' or (lookup_type in ['gt', 'lt', 'gte', 'lte']
 and not is_multicolumn)):
 value = get_normalized_value(raw_value)
 for target, source, val in zip(targets, sources, value):
 lookup_class = target.get_lookup(lookup_type)
 root_constraint.add(
 lookup_class(target.get_col(alias, source), val), AND)
 elif lookup_type in ['range', 'in'] and not is_multicolumn:
 values = [get_normalized_value(value) for value in raw_value]
 value = [val[0] for val in values]
 lookup_class = targets[0].get_lookup(lookup_type)
 root_constraint.add(lookup_class(targets[0].get_col(alias, sources[0]), value), AND)
 elif lookup_type == 'in':
 values = [get_normalized_value(value) for value in raw_value]
 for value in values:
 value_constraint = constraint_class()
 for source, target, val in zip(sources, targets, value):
 lookup_class = target.get_lookup('exact')
 lookup = lookup_class(target.get_col(alias, source), val)
 value_constraint.add(lookup, AND)
 root_constraint.add(value_constraint, OR)
 else:
 raise TypeError('Related Field got invalid lookup: %s' % lookup_type)
 return root_constraint

 @property
 def attnames(self):
 return tuple(field.attname for field in self.local_related_fields)

 def get_defaults(self):
 return tuple(field.get_default() for field in self.local_related_fields)

 def contribute_to_class(self, cls, name, virtual_only=False):
 super(ForeignObject, self).contribute_to_class(cls, name, virtual_only=virtual_only)
 setattr(cls, self.name, ReverseSingleRelatedObjectDescriptor(self))

 def contribute_to_related_class(self, cls, related):
 # Internal FK's - i.e., those with a related name ending with '+' -
 # and swapped models don't get a related descriptor.
 if not self.rel.is_hidden() and not related.related_model._meta.swapped:
 setattr(cls, related.get_accessor_name(), self.related_accessor_class(related))
 # While 'limit_choices_to' might be a callable, simply pass
 # it along for later - this is too early because it's still
 # model load time.
 if self.rel.limit_choices_to:
 cls._meta.related_fkey_lookups.append(self.rel.limit_choices_to)

class ForeignKey(ForeignObject):
 # Field flags
 many_to_many = False
 many_to_one = True
 one_to_many = False
 one_to_one = False

 empty_strings_allowed = False
 default_error_messages = {
 'invalid': _('%(model)s instance with %(field)s %(value)r does not exist.')
 }
 description = _("Foreign Key (type determined by related field)")

 def __init__(self, to, to_field=None, rel_class=ManyToOneRel,
 db_constraint=True, **kwargs):
 try:
 to._meta.model_name
 except AttributeError: # to._meta doesn't exist, so it must be RECURSIVE_RELATIONSHIP_CONSTANT
 assert isinstance(to, six.string_types), (
 "%s(%r) is invalid. First parameter to ForeignKey must be "
 "either a model, a model name, or the string %r" % (
 self.__class__.__name__, to,
 RECURSIVE_RELATIONSHIP_CONSTANT,
)
)
 else:
 # For backwards compatibility purposes, we need to *try* and set
 # the to_field during FK construction. It won't be guaranteed to
 # be correct until contribute_to_class is called. Refs #12190.
 to_field = to_field or (to._meta.pk and to._meta.pk.name)

 if 'db_index' not in kwargs:
 kwargs['db_index'] = True

 self.db_constraint = db_constraint

 kwargs['rel'] = rel_class(
 self, to, to_field,
 related_name=kwargs.pop('related_name', None),
 related_query_name=kwargs.pop('related_query_name', None),
 limit_choices_to=kwargs.pop('limit_choices_to', None),
 parent_link=kwargs.pop('parent_link', False),
 on_delete=kwargs.pop('on_delete', CASCADE),
)
 super(ForeignKey, self).__init__(to, ['self'], [to_field], **kwargs)

 def check(self, **kwargs):
 errors = super(ForeignKey, self).check(**kwargs)
 errors.extend(self._check_on_delete())
 errors.extend(self._check_unique())
 return errors

 def _check_on_delete(self):
 on_delete = getattr(self.rel, 'on_delete', None)
 if on_delete == SET_NULL and not self.null:
 return [
 checks.Error(
 'Field specifies on_delete=SET_NULL, but cannot be null.',
 hint='Set null=True argument on the field, or change the on_delete rule.',
 obj=self,
 id='fields.E320',
)
]
 elif on_delete == SET_DEFAULT and not self.has_default():
 return [
 checks.Error(
 'Field specifies on_delete=SET_DEFAULT, but has no default value.',
 hint='Set a default value, or change the on_delete rule.',
 obj=self,
 id='fields.E321',
)
]
 else:
 return []

 def _check_unique(self, **kwargs):
 return [
 checks.Warning(
 'Setting unique=True on a ForeignKey has the same effect as using a OneToOneField.',
 hint='ForeignKey(unique=True) is usually better served by a OneToOneField.',
 obj=self,
 id='fields.W342',
)
] if self.unique else []

 def deconstruct(self):
 name, path, args, kwargs = super(ForeignKey, self).deconstruct()
 del kwargs['to_fields']
 del kwargs['from_fields']
 # Handle the simpler arguments
 if self.db_index:
 del kwargs['db_index']
 else:
 kwargs['db_index'] = False
 if self.db_constraint is not True:
 kwargs['db_constraint'] = self.db_constraint
 # Rel needs more work.
 to_meta = getattr(self.rel.to, "_meta", None)
 if self.rel.field_name and (not to_meta or (to_meta.pk and self.rel.field_name != to_meta.pk.name)):
 kwargs['to_field'] = self.rel.field_name
 return name, path, args, kwargs

 @property
 def related_field(self):
 return self.foreign_related_fields[0]

 def get_reverse_path_info(self):
 """
 Get path from the related model to this field's model.
 """
 opts = self.model._meta
 from_opts = self.rel.to._meta
 pathinfos = [PathInfo(from_opts, opts, (opts.pk,), self.rel, not self.unique, False)]
 return pathinfos

 def validate(self, value, model_instance):
 if self.rel.parent_link:
 return
 super(ForeignKey, self).validate(value, model_instance)
 if value is None:
 return

 using = router.db_for_read(model_instance.__class__, instance=model_instance)
 qs = self.rel.to._default_manager.using(using).filter(
 **{self.rel.field_name: value}
)
 qs = qs.complex_filter(self.get_limit_choices_to())
 if not qs.exists():
 raise exceptions.ValidationError(
 self.error_messages['invalid'],
 code='invalid',
 params={
 'model': self.rel.to._meta.verbose_name, 'pk': value,
 'field': self.rel.field_name, 'value': value,
 }, # 'pk' is included for backwards compatibility
)

 def get_attname(self):
 return '%s_id' % self.name

 def get_attname_column(self):
 attname = self.get_attname()
 column = self.db_column or attname
 return attname, column

 def get_default(self):
 "Here we check if the default value is an object and return the to_field if so."
 field_default = super(ForeignKey, self).get_default()
 if isinstance(field_default, self.rel.to):
 return getattr(field_default, self.related_field.attname)
 return field_default

 def get_db_prep_save(self, value, connection):
 if value is None or (value == '' and
 (not self.related_field.empty_strings_allowed or
 connection.features.interprets_empty_strings_as_nulls)):
 return None
 else:
 return self.related_field.get_db_prep_save(value, connection=connection)

 def value_to_string(self, obj):
 if not obj:
 # In required many-to-one fields with only one available choice,
 # select that one available choice. Note: For SelectFields
 # we have to check that the length of choices is *2*, not 1,
 # because SelectFields always have an initial "blank" value.
 if not self.blank and self.choices:
 choice_list = self.get_choices_default()
 if len(choice_list) == 2:
 return smart_text(choice_list[1][0])
 return super(ForeignKey, self).value_to_string(obj)

 def contribute_to_related_class(self, cls, related):
 super(ForeignKey, self).contribute_to_related_class(cls, related)
 if self.rel.field_name is None:
 self.rel.field_name = cls._meta.pk.name

 def formfield(self, **kwargs):
 db = kwargs.pop('using', None)
 if isinstance(self.rel.to, six.string_types):
 raise ValueError("Cannot create form field for %r yet, because "
 "its related model %r has not been loaded yet" %
 (self.name, self.rel.to))
 defaults = {
 'form_class': forms.ModelChoiceField,
 'queryset': self.rel.to._default_manager.using(db),
 'to_field_name': self.rel.field_name,
 }
 defaults.update(kwargs)
 return super(ForeignKey, self).formfield(**defaults)

 def db_type(self, connection):
 # The database column type of a ForeignKey is the column type
 # of the field to which it points. An exception is if the ForeignKey
 # points to an AutoField/PositiveIntegerField/PositiveSmallIntegerField,
 # in which case the column type is simply that of an IntegerField.
 # If the database needs similar types for key fields however, the only
 # thing we can do is making AutoField an IntegerField.
 rel_field = self.related_field
 if (isinstance(rel_field, AutoField) or
 (not connection.features.related_fields_match_type and
 isinstance(rel_field, (PositiveIntegerField,
 PositiveSmallIntegerField)))):
 return IntegerField().db_type(connection=connection)
 return rel_field.db_type(connection=connection)

 def db_parameters(self, connection):
 return {"type": self.db_type(connection), "check": []}

 def convert_empty_strings(self, value, expression, connection, context):
 if (not value) and isinstance(value, six.string_types):
 return None
 return value

 def get_db_converters(self, connection):
 converters = super(ForeignKey, self).get_db_converters(connection)
 if connection.features.interprets_empty_strings_as_nulls:
 converters += [self.convert_empty_strings]
 return converters

 def get_col(self, alias, output_field=None):
 return super(ForeignKey, self).get_col(alias, output_field or self.related_field)

class OneToOneField(ForeignKey):
 """
 A OneToOneField is essentially the same as a ForeignKey, with the exception
 that always carries a "unique" constraint with it and the reverse relation
 always returns the object pointed to (since there will only ever be one),
 rather than returning a list.
 """
 # Field flags
 many_to_many = False
 many_to_one = False
 one_to_many = False
 one_to_one = True

 related_accessor_class = SingleRelatedObjectDescriptor
 description = _("One-to-one relationship")

 def __init__(self, to, to_field=None, **kwargs):
 kwargs['unique'] = True
 super(OneToOneField, self).__init__(to, to_field, OneToOneRel, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(OneToOneField, self).deconstruct()
 if "unique" in kwargs:
 del kwargs['unique']
 return name, path, args, kwargs

 def formfield(self, **kwargs):
 if self.rel.parent_link:
 return None
 return super(OneToOneField, self).formfield(**kwargs)

 def save_form_data(self, instance, data):
 if isinstance(data, self.rel.to):
 setattr(instance, self.name, data)
 else:
 setattr(instance, self.attname, data)

 def _check_unique(self, **kwargs):
 # override ForeignKey since check isn't applicable here
 return []

def create_many_to_many_intermediary_model(field, klass):
 from django.db import models
 managed = True
 if isinstance(field.rel.to, six.string_types) and field.rel.to != RECURSIVE_RELATIONSHIP_CONSTANT:
 to_model = field.rel.to
 to = to_model.split('.')[-1]

 def set_managed(field, model, cls):
 field.rel.through._meta.managed = model._meta.managed or cls._meta.managed
 add_lazy_relation(klass, field, to_model, set_managed)
 elif isinstance(field.rel.to, six.string_types):
 to = klass._meta.object_name
 to_model = klass
 managed = klass._meta.managed
 else:
 to = field.rel.to._meta.object_name
 to_model = field.rel.to
 managed = klass._meta.managed or to_model._meta.managed
 name = '%s_%s' % (klass._meta.object_name, field.name)
 if field.rel.to == RECURSIVE_RELATIONSHIP_CONSTANT or to == klass._meta.object_name:
 from_ = 'from_%s' % to.lower()
 to = 'to_%s' % to.lower()
 else:
 from_ = klass._meta.model_name
 to = to.lower()
 meta = type(str('Meta'), (object,), {
 'db_table': field._get_m2m_db_table(klass._meta),
 'managed': managed,
 'auto_created': klass,
 'app_label': klass._meta.app_label,
 'db_tablespace': klass._meta.db_tablespace,
 'unique_together': (from_, to),
 'verbose_name': '%(from)s-%(to)s relationship' % {'from': from_, 'to': to},
 'verbose_name_plural': '%(from)s-%(to)s relationships' % {'from': from_, 'to': to},
 'apps': field.model._meta.apps,
 })
 # Construct and return the new class.
 return type(str(name), (models.Model,), {
 'Meta': meta,
 '__module__': klass.__module__,
 from_: models.ForeignKey(
 klass,
 related_name='%s+' % name,
 db_tablespace=field.db_tablespace,
 db_constraint=field.rel.db_constraint,
),
 to: models.ForeignKey(
 to_model,
 related_name='%s+' % name,
 db_tablespace=field.db_tablespace,
 db_constraint=field.rel.db_constraint,
)
 })

class ManyToManyField(RelatedField):
 # Field flags
 many_to_many = True
 many_to_one = False
 one_to_many = False
 one_to_one = False

 description = _("Many-to-many relationship")

 def __init__(self, to, db_constraint=True, swappable=True, **kwargs):
 try:
 to._meta
 except AttributeError: # to._meta doesn't exist, so it must be RECURSIVE_RELATIONSHIP_CONSTANT
 assert isinstance(to, six.string_types), (
 "%s(%r) is invalid. First parameter to ManyToManyField must be "
 "either a model, a model name, or the string %r" %
 (self.__class__.__name__, to, RECURSIVE_RELATIONSHIP_CONSTANT)
)
 # Class names must be ASCII in Python 2.x, so we forcibly coerce it
 # here to break early if there's a problem.
 to = str(to)
 kwargs['verbose_name'] = kwargs.get('verbose_name', None)
 kwargs['rel'] = ManyToManyRel(
 self, to,
 related_name=kwargs.pop('related_name', None),
 related_query_name=kwargs.pop('related_query_name', None),
 limit_choices_to=kwargs.pop('limit_choices_to', None),
 symmetrical=kwargs.pop('symmetrical', to == RECURSIVE_RELATIONSHIP_CONSTANT),
 through=kwargs.pop('through', None),
 through_fields=kwargs.pop('through_fields', None),
 db_constraint=db_constraint,
)

 self.swappable = swappable
 self.db_table = kwargs.pop('db_table', None)
 if kwargs['rel'].through is not None:
 assert self.db_table is None, "Cannot specify a db_table if an intermediary model is used."

 super(ManyToManyField, self).__init__(**kwargs)

 def check(self, **kwargs):
 errors = super(ManyToManyField, self).check(**kwargs)
 errors.extend(self._check_unique(**kwargs))
 errors.extend(self._check_relationship_model(**kwargs))
 errors.extend(self._check_ignored_options(**kwargs))
 return errors

 def _check_unique(self, **kwargs):
 if self.unique:
 return [
 checks.Error(
 'ManyToManyFields cannot be unique.',
 hint=None,
 obj=self,
 id='fields.E330',
)
]
 return []

 def _check_ignored_options(self, **kwargs):
 warnings = []

 if self.null:
 warnings.append(
 checks.Warning(
 'null has no effect on ManyToManyField.',
 hint=None,
 obj=self,
 id='fields.W340',
)
)

 if len(self._validators) > 0:
 warnings.append(
 checks.Warning(
 'ManyToManyField does not support validators.',
 hint=None,
 obj=self,
 id='fields.W341',
)
)

 return warnings

 def _check_relationship_model(self, from_model=None, **kwargs):
 if hasattr(self.rel.through, '_meta'):
 qualified_model_name = "%s.%s" % (
 self.rel.through._meta.app_label, self.rel.through.__name__)
 else:
 qualified_model_name = self.rel.through

 errors = []

 if self.rel.through not in apps.get_models(include_auto_created=True):
 # The relationship model is not installed.
 errors.append(
 checks.Error(
 ("Field specifies a many-to-many relation through model "
 "'%s', which has not been installed.") %
 qualified_model_name,
 hint=None,
 obj=self,
 id='fields.E331',
)
)

 else:

 assert from_model is not None, \
 "ManyToManyField with intermediate " \
 "tables cannot be checked if you don't pass the model " \
 "where the field is attached to."

 # Set some useful local variables
 to_model = self.rel.to
 from_model_name = from_model._meta.object_name
 if isinstance(to_model, six.string_types):
 to_model_name = to_model
 else:
 to_model_name = to_model._meta.object_name
 relationship_model_name = self.rel.through._meta.object_name
 self_referential = from_model == to_model

 # Check symmetrical attribute.
 if (self_referential and self.rel.symmetrical and
 not self.rel.through._meta.auto_created):
 errors.append(
 checks.Error(
 'Many-to-many fields with intermediate tables must not be symmetrical.',
 hint=None,
 obj=self,
 id='fields.E332',
)
)

 # Count foreign keys in intermediate model
 if self_referential:
 seen_self = sum(from_model == getattr(field.rel, 'to', None)
 for field in self.rel.through._meta.fields)

 if seen_self > 2 and not self.rel.through_fields:
 errors.append(
 checks.Error(
 ("The model is used as an intermediate model by "
 "'%s', but it has more than two foreign keys "
 "to '%s', which is ambiguous. You must specify "
 "which two foreign keys Django should use via the "
 "through_fields keyword argument.") % (self, from_model_name),
 hint=("Use through_fields to specify which two "
 "foreign keys Django should use."),
 obj=self.rel.through,
 id='fields.E333',
)
)

 else:
 # Count foreign keys in relationship model
 seen_from = sum(from_model == getattr(field.rel, 'to', None)
 for field in self.rel.through._meta.fields)
 seen_to = sum(to_model == getattr(field.rel, 'to', None)
 for field in self.rel.through._meta.fields)

 if seen_from > 1 and not self.rel.through_fields:
 errors.append(
 checks.Error(
 ("The model is used as an intermediate model by "
 "'%s', but it has more than one foreign key "
 "from '%s', which is ambiguous. You must specify "
 "which foreign key Django should use via the "
 "through_fields keyword argument.") % (self, from_model_name),
 hint=('If you want to create a recursive relationship, '
 'use ForeignKey("self", symmetrical=False, '
 'through="%s").') % relationship_model_name,
 obj=self,
 id='fields.E334',
)
)

 if seen_to > 1 and not self.rel.through_fields:
 errors.append(
 checks.Error(
 ("The model is used as an intermediate model by "
 "'%s', but it has more than one foreign key "
 "to '%s', which is ambiguous. You must specify "
 "which foreign key Django should use via the "
 "through_fields keyword argument.") % (self, to_model_name),
 hint=('If you want to create a recursive '
 'relationship, use ForeignKey("self", '
 'symmetrical=False, through="%s").') % relationship_model_name,
 obj=self,
 id='fields.E335',
)
)

 if seen_from == 0 or seen_to == 0:
 errors.append(
 checks.Error(
 ("The model is used as an intermediate model by "
 "'%s', but it does not have a foreign key to '%s' or '%s'.") % (
 self, from_model_name, to_model_name
),
 hint=None,
 obj=self.rel.through,
 id='fields.E336',
)
)

 # Validate `through_fields`
 if self.rel.through_fields is not None:
 # Validate that we're given an iterable of at least two items
 # and that none of them is "falsy"
 if not (len(self.rel.through_fields) >= 2 and
 self.rel.through_fields[0] and self.rel.through_fields[1]):
 errors.append(
 checks.Error(
 ("Field specifies 'through_fields' but does not "
 "provide the names of the two link fields that should be "
 "used for the relation through model "
 "'%s'.") % qualified_model_name,
 hint=("Make sure you specify 'through_fields' as "
 "through_fields=('field1', 'field2')"),
 obj=self,
 id='fields.E337',
)
)

 # Validate the given through fields -- they should be actual
 # fields on the through model, and also be foreign keys to the
 # expected models
 else:
 assert from_model is not None, \
 "ManyToManyField with intermediate " \
 "tables cannot be checked if you don't pass the model " \
 "where the field is attached to."

 source, through, target = from_model, self.rel.through, self.rel.to
 source_field_name, target_field_name = self.rel.through_fields[:2]

 for field_name, related_model in ((source_field_name, source),
 (target_field_name, target)):

 possible_field_names = []
 for f in through._meta.fields:
 if hasattr(f, 'rel') and getattr(f.rel, 'to', None) == related_model:
 possible_field_names.append(f.name)
 if possible_field_names:
 hint = ("Did you mean one of the following foreign "
 "keys to '%s': %s?") % (related_model._meta.object_name,
 ', '.join(possible_field_names))
 else:
 hint = None

 try:
 field = through._meta.get_field(field_name)
 except FieldDoesNotExist:
 errors.append(
 checks.Error(
 ("The intermediary model '%s' has no field '%s'.") % (
 qualified_model_name, field_name),
 hint=hint,
 obj=self,
 id='fields.E338',
)
)
 else:
 if not (hasattr(field, 'rel') and
 getattr(field.rel, 'to', None) == related_model):
 errors.append(
 checks.Error(
 "'%s.%s' is not a foreign key to '%s'." % (
 through._meta.object_name, field_name,
 related_model._meta.object_name),
 hint=hint,
 obj=self,
 id='fields.E339',
)
)

 return errors

 def deconstruct(self):
 name, path, args, kwargs = super(ManyToManyField, self).deconstruct()
 # Handle the simpler arguments
 if self.db_table is not None:
 kwargs['db_table'] = self.db_table
 if self.rel.db_constraint is not True:
 kwargs['db_constraint'] = self.rel.db_constraint
 if self.rel.related_name is not None:
 kwargs['related_name'] = self.rel.related_name
 if self.rel.related_query_name is not None:
 kwargs['related_query_name'] = self.rel.related_query_name
 # Rel needs more work.
 if isinstance(self.rel.to, six.string_types):
 kwargs['to'] = self.rel.to
 else:
 kwargs['to'] = "%s.%s" % (self.rel.to._meta.app_label, self.rel.to._meta.object_name)
 if getattr(self.rel, 'through', None) is not None:
 if isinstance(self.rel.through, six.string_types):
 kwargs['through'] = self.rel.through
 elif not self.rel.through._meta.auto_created:
 kwargs['through'] = "%s.%s" % (self.rel.through._meta.app_label, self.rel.through._meta.object_name)
 # If swappable is True, then see if we're actually pointing to the target
 # of a swap.
 swappable_setting = self.swappable_setting
 if swappable_setting is not None:
 # If it's already a settings reference, error
 if hasattr(kwargs['to'], "setting_name"):
 if kwargs['to'].setting_name != swappable_setting:
 raise ValueError(
 "Cannot deconstruct a ManyToManyField pointing to a "
 "model that is swapped in place of more than one model "
 "(%s and %s)" % (kwargs['to'].setting_name, swappable_setting)
)
 # Set it
 from django.db.migrations.writer import SettingsReference
 kwargs['to'] = SettingsReference(
 kwargs['to'],
 swappable_setting,
)
 return name, path, args, kwargs

 def _get_path_info(self, direct=False):
 """
 Called by both direct and indirect m2m traversal.
 """
 pathinfos = []
 int_model = self.rel.through
 linkfield1 = int_model._meta.get_field(self.m2m_field_name())
 linkfield2 = int_model._meta.get_field(self.m2m_reverse_field_name())
 if direct:
 join1infos = linkfield1.get_reverse_path_info()
 join2infos = linkfield2.get_path_info()
 else:
 join1infos = linkfield2.get_reverse_path_info()
 join2infos = linkfield1.get_path_info()
 pathinfos.extend(join1infos)
 pathinfos.extend(join2infos)
 return pathinfos

 def get_path_info(self):
 return self._get_path_info(direct=True)

 def get_reverse_path_info(self):
 return self._get_path_info(direct=False)

 def get_choices_default(self):
 return Field.get_choices(self, include_blank=False)

 def _get_m2m_db_table(self, opts):
 "Function that can be curried to provide the m2m table name for this relation"
 if self.rel.through is not None:
 return self.rel.through._meta.db_table
 elif self.db_table:
 return self.db_table
 else:
 return utils.truncate_name('%s_%s' % (opts.db_table, self.name),
 connection.ops.max_name_length())

 def _get_m2m_attr(self, related, attr):
 "Function that can be curried to provide the source accessor or DB column name for the m2m table"
 cache_attr = '_m2m_%s_cache' % attr
 if hasattr(self, cache_attr):
 return getattr(self, cache_attr)
 if self.rel.through_fields is not None:
 link_field_name = self.rel.through_fields[0]
 else:
 link_field_name = None
 for f in self.rel.through._meta.fields:
 if (f.is_relation and f.rel.to == related.related_model and
 (link_field_name is None or link_field_name == f.name)):
 setattr(self, cache_attr, getattr(f, attr))
 return getattr(self, cache_attr)

 def _get_m2m_reverse_attr(self, related, attr):
 "Function that can be curried to provide the related accessor or DB column name for the m2m table"
 cache_attr = '_m2m_reverse_%s_cache' % attr
 if hasattr(self, cache_attr):
 return getattr(self, cache_attr)
 found = False
 if self.rel.through_fields is not None:
 link_field_name = self.rel.through_fields[1]
 else:
 link_field_name = None
 for f in self.rel.through._meta.fields:
 # NOTE f.rel.to != f.related_model
 if f.is_relation and f.rel.to == related.model:
 if link_field_name is None and related.related_model == related.model:
 # If this is an m2m-intermediate to self,
 # the first foreign key you find will be
 # the source column. Keep searching for
 # the second foreign key.
 if found:
 setattr(self, cache_attr, getattr(f, attr))
 break
 else:
 found = True
 elif link_field_name is None or link_field_name == f.name:
 setattr(self, cache_attr, getattr(f, attr))
 break
 return getattr(self, cache_attr)

 def value_to_string(self, obj):
 data = ''
 if obj:
 qs = getattr(obj, self.name).all()
 data = [instance._get_pk_val() for instance in qs]
 else:
 # In required many-to-many fields with only one available choice,
 # select that one available choice.
 if not self.blank:
 choices_list = self.get_choices_default()
 if len(choices_list) == 1:
 data = [choices_list[0][0]]
 return smart_text(data)

 def contribute_to_class(self, cls, name, **kwargs):
 # To support multiple relations to self, it's useful to have a non-None
 # related name on symmetrical relations for internal reasons. The
 # concept doesn't make a lot of sense externally ("you want me to
 # specify *what* on my non-reversible relation?!"), so we set it up
 # automatically. The funky name reduces the chance of an accidental
 # clash.
 if self.rel.symmetrical and (self.rel.to == "self" or self.rel.to == cls._meta.object_name):
 self.rel.related_name = "%s_rel_+" % name

 super(ManyToManyField, self).contribute_to_class(cls, name, **kwargs)

 # The intermediate m2m model is not auto created if:
 # 1) There is a manually specified intermediate, or
 # 2) The class owning the m2m field is abstract.
 # 3) The class owning the m2m field has been swapped out.
 if not self.rel.through and not cls._meta.abstract and not cls._meta.swapped:
 self.rel.through = create_many_to_many_intermediary_model(self, cls)

 # Add the descriptor for the m2m relation
 setattr(cls, self.name, ReverseManyRelatedObjectsDescriptor(self))

 # Set up the accessor for the m2m table name for the relation
 self.m2m_db_table = curry(self._get_m2m_db_table, cls._meta)

 # Populate some necessary rel arguments so that cross-app relations
 # work correctly.
 if isinstance(self.rel.through, six.string_types):
 def resolve_through_model(field, model, cls):
 field.rel.through = model
 add_lazy_relation(cls, self, self.rel.through, resolve_through_model)

 def contribute_to_related_class(self, cls, related):
 # Internal M2Ms (i.e., those with a related name ending with '+')
 # and swapped models don't get a related descriptor.
 if not self.rel.is_hidden() and not related.related_model._meta.swapped:
 setattr(cls, related.get_accessor_name(), ManyRelatedObjectsDescriptor(related))

 # Set up the accessors for the column names on the m2m table
 self.m2m_column_name = curry(self._get_m2m_attr, related, 'column')
 self.m2m_reverse_name = curry(self._get_m2m_reverse_attr, related, 'column')

 self.m2m_field_name = curry(self._get_m2m_attr, related, 'name')
 self.m2m_reverse_field_name = curry(self._get_m2m_reverse_attr, related, 'name')

 get_m2m_rel = curry(self._get_m2m_attr, related, 'rel')
 self.m2m_target_field_name = lambda: get_m2m_rel().field_name
 get_m2m_reverse_rel = curry(self._get_m2m_reverse_attr, related, 'rel')
 self.m2m_reverse_target_field_name = lambda: get_m2m_reverse_rel().field_name

 def set_attributes_from_rel(self):
 pass

 def value_from_object(self, obj):
 "Returns the value of this field in the given model instance."
 return getattr(obj, self.attname).all()

 def save_form_data(self, instance, data):
 setattr(instance, self.attname, data)

 def formfield(self, **kwargs):
 db = kwargs.pop('using', None)
 defaults = {
 'form_class': forms.ModelMultipleChoiceField,
 'queryset': self.rel.to._default_manager.using(db),
 }
 defaults.update(kwargs)
 # If initial is passed in, it's a list of related objects, but the
 # MultipleChoiceField takes a list of IDs.
 if defaults.get('initial') is not None:
 initial = defaults['initial']
 if callable(initial):
 initial = initial()
 defaults['initial'] = [i._get_pk_val() for i in initial]
 return super(ManyToManyField, self).formfield(**defaults)

 def db_type(self, connection):
 # A ManyToManyField is not represented by a single column,
 # so return None.
 return None

 def db_parameters(self, connection):
 return {"type": None, "check": None}

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_static/plus.png

_modules/tidings/utils.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for tidings.utils

from zlib import crc32

from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.core.mail import EmailMessage
from django.template import Context, loader

try:
 from django.utils.importlib import import_module
except ImportError:
 from importlib import import_module

class peekable(object):
 """Wrapper for an iterator to allow 1-item lookahead"""
 # Lowercase to blend in with itertools. The fact that it's a class is an
 # implementation detail.

 # TODO: Liberate into itertools.

 def __init__(self, iterable):
 self._it = iter(iterable)

 def __iter__(self):
 return self

 def __nonzero__(self):
 try:
 self.peek()
 except StopIteration:
 return False
 return True

 def peek(self):
 """Return the item that will be next returned from ``next()``.

 Raise ``StopIteration`` if there are no items left.

 """
 # TODO: Give peek a default arg. Raise StopIteration only when it isn't
 # provided. If it is, return the arg. Just like get('key', object())
 if not hasattr(self, '_peek'):
 self._peek = self._it.next()
 return self._peek

 def next(self):
 ret = self.peek()
 del self._peek
 return ret

def collate(*iterables, **kwargs):
 """Return an iterable ordered collation of the already-sorted items
 from each of ``iterables``, compared by kwarg ``key``.

 If ``reverse=True`` is passed, iterables must return their results in
 descending order rather than ascending.

 """
 # TODO: Liberate into the stdlib.
 key = kwargs.pop('key', lambda a: a)
 reverse = kwargs.pop('reverse', False)

 min_or_max = max if reverse else min
 peekables = [peekable(it) for it in iterables]
 peekables = [p for p in peekables if p] # Kill empties.
 while peekables:
 _, p = min_or_max((key(p.peek()), p) for p in peekables)
 yield p.next()
 peekables = [p for p in peekables if p]

[docs]def hash_to_unsigned(data):
 """If ``data`` is a string or unicode string, return an unsigned 4-byte int
 hash of it. If ``data`` is already an int that fits those parameters,
 return it verbatim.

 If ``data`` is an int outside that range, behavior is undefined at the
 moment. We rely on the ``PositiveIntegerField`` on
 :class:`~tidings.models.WatchFilter` to scream if the int is too long for
 the field.

 We use CRC32 to do the hashing. Though CRC32 is not a good general-purpose
 hash function, it has no collisions on a dictionary of 38,470 English
 words, which should be fine for the small sets that :class:`WatchFilters
 <tidings.models.WatchFilter>` are designed to enumerate. As a bonus, it is
 fast and available as a built-in function in some DBs. If your set of
 filter values is very large or has different CRC32 distribution properties
 than English words, you might want to do your own hashing in your
 :class:`~tidings.events.Event` subclass and pass ints when specifying
 filter values.

 """
 if isinstance(data, basestring):
 # Return a CRC32 value identical across Python versions and platforms
 # by stripping the sign bit as on
 # http://docs.python.org/library/zlib.html.
 return crc32(data.encode('utf-8')) & 0xffffffff
 else:
 return int(data)

[docs]def emails_with_users_and_watches(subject, template_path, vars,
 users_and_watches, from_email=settings.TIDINGS_FROM_ADDRESS,
 **extra_kwargs):
 """Return iterable of EmailMessages with user and watch values substituted.

 A convenience function for generating emails by repeatedly rendering a
 Django template with the given ``vars`` plus a ``user`` and ``watches`` key
 for each pair in ``users_and_watches``

 :arg template_path: path to template file
 :arg vars: a map which becomes the Context passed in to the template
 :arg extra_kwargs: additional kwargs to pass into EmailMessage constructor

 """
 template = loader.get_template(template_path)
 context = Context(vars)
 for u, w in users_and_watches:
 context['user'] = u
 context['watch'] = w[0] # Arbitrary single watch for compatibility
 # with 0.1. TODO: remove.
 context['watches'] = w
 yield EmailMessage(subject,
 template.render(context),
 from_email,
 [u.email],
 **extra_kwargs)

def _imported_symbol(import_path):
 """Resolve a dotted path into a symbol, and return that.

 For example...

 >>> _imported_symbol('django.db.models.Model')
 <class 'django.db.models.base.Model'>

 Raise ImportError is there's no such module, AttributeError if no such
 symbol.

 """
 module_name, symbol_name = import_path.rsplit('.', 1)
 module = import_module(module_name)
 return getattr(module, symbol_name)

def import_from_setting(setting_name, fallback):
 """Return the resolution of an import path stored in a Django setting.

 :arg setting_name: The name of the setting holding the import path
 :arg fallback: An import path to use if the given setting doesn't exist

 Raise ImproperlyConfigured if a path is given that can't be resolved.

 """
 path = getattr(settings, setting_name, fallback)
 try:
 return _imported_symbol(path)
 except (ImportError, AttributeError, ValueError):
 raise ImproperlyConfigured('No such module or attribute: %s' % path)

Here to be imported by others:
reverse = import_from_setting('TIDINGS_REVERSE',
 'django.core.urlresolvers.reverse')

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_modules/tidings/views.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for tidings.views

from django.shortcuts import render

from tidings.models import Watch

[docs]def unsubscribe(request, watch_id):
 """Unsubscribe from (i.e. delete) the watch of ID ``watch_id``.

 Expects an ``s`` querystring parameter matching the watch's secret.

 GET will result in a confirmation page (or a failure page if the secret is
 wrong). POST will actually delete the watch (again, if the secret is
 correct).

 The templates assume use of the Jinja templating engine via jingo.Loader
 and the presence of a ``base.html`` template containing a ``content``
 block.

 If you aren't using Jinja via jingo.Loader, you can replace the templates
 with your own django templates.

 """
 # Grab the watch and secret; complain if either is wrong:
 try:
 watch = Watch.objects.get(pk=watch_id)
 secret = request.GET.get('s') # 's' is for 'secret' but saves wrapping
 # in mails
 if secret != watch.secret:
 raise Watch.DoesNotExist
 except Watch.DoesNotExist:
 return render(request, 'tidings/unsubscribe_error.html')

 if request.method == 'POST':
 watch.delete()
 return render(request, 'tidings/unsubscribe_success.html')

 return render(request, 'tidings/unsubscribe.html')

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_modules/tidings/events.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for tidings.events

from collections import Sequence
import random
from smtplib import SMTPException

from django.conf import settings
from django.contrib.auth import get_user_model
from django.contrib.contenttypes.models import ContentType
from django.core import mail
from django.db.models import Q

from celery.task import task

from tidings.models import Watch, WatchFilter, EmailUser, multi_raw
from tidings.utils import collate, hash_to_unsigned

[docs]class ActivationRequestFailed(Exception):
 """Raised when activation request fails, e.g. if email could not be sent"""
 def __init__(self, msgs):
 self.msgs = msgs

def _unique_by_email(users_and_watches):
 """Given a sequence of (User/EmailUser, [Watch, ...]) pairs
 clustered by email address (which is never ''), yield from each
 cluster a single pair like this::

 (User/EmailUser, [Watch, Watch, ...]).

 The User/Email is that of...
 (1) the first incoming pair where the User has an email and is not
 anonymous, or, if there isn't such a user...
 (2) the first pair.

 The list of Watches consists of all those found in the cluster.

 Compares email addresses case-insensitively.

 """
 def ensure_user_has_email(user, cluster_email):
 """Make sure the user in the user-watch pair has an email address.

 The caller guarantees us an email from either the user or the watch. If
 the passed-in user has no email, we return an EmailUser instead having
 the email address from the watch.

 """
 # Some of these cases shouldn't happen, but we're tolerant.
 if not getattr(user, 'email', ''):
 user = EmailUser(cluster_email)
 return user

 # TODO: Do this instead with clever SQL that somehow returns just the
 # best row for each email.

 cluster_email = '' # email of current cluster
 favorite_user = None # best user in cluster so far
 watches = [] # all watches in cluster
 for u, w in users_and_watches:
 # w always has at least 1 Watch. All the emails are the same.
 row_email = u.email or w[0].email
 if cluster_email.lower() != row_email.lower():
 # Starting a new cluster.
 if cluster_email != '':
 # Ship the favorites from the previous cluster:
 yield ensure_user_has_email(favorite_user, cluster_email), watches
 favorite_user, watches = u, []
 cluster_email = row_email
 elif ((not favorite_user.email or u.is_anonymous()) and
 u.email and not u.is_anonymous()):
 favorite_user = u
 watches.extend(w)
 if favorite_user is not None:
 yield ensure_user_has_email(favorite_user, cluster_email), watches

[docs]class Event(object):
 """Abstract base class for events

 An :class:`Event` represents, simply, something that occurs. A
 :class:`~tidings.models.Watch` is a record of someone's interest in a
 certain type of :class:`Event`, distinguished by ``Event.event_type``.

 Fire an Event (``SomeEvent.fire()``) from the code that causes the
 interesting event to occur. Fire it any time the event *might* have
 occurred. The Event will determine whether conditions are right to actually
 send notifications; don't succumb to the temptation to do these tests
 outside the Event, because you'll end up repeating yourself if the event is
 ever fired from more than one place.

 :class:`Event` subclasses can optionally represent a more limited scope of
 interest by populating the ``Watch.content_type`` field and/or adding
 related :class:`~tidings.models.WatchFilter` rows holding name/value pairs,
 the meaning of which is up to each individual subclass. NULL values are
 considered wildcards.

 :class:`Event` subclass instances must be pickleable so they can be
 shuttled off to celery tasks.

 """
 # event_type = 'hamster modified' # key for the event_type column
 content_type = None # or, for example, Hamster

 #: Possible filter keys, for validation only. For example:
 #: ``set(['color', 'flavor'])``
 filters = set()

[docs] def fire(self, exclude=None):
 """Asynchronously notify everyone watching the event.

 We are explicit about sending notifications; we don't just key off
 creation signals, because the receiver of a post_save signal has no
 idea what just changed, so it doesn't know which notifications to send.
 Also, we could easily send mail accidentally: for instance, during
 tests. If we want implicit event firing, we can always register a
 signal handler that calls :meth:`fire()`.

 :arg exclude: If a saved user is passed in, that user will not be
 notified, though anonymous notifications having the same email
 address may still be sent. A sequence of users may also be passed in.

 """
 # Tasks don't receive the `self` arg implicitly.
 self._fire_task.delay(self, exclude=exclude)

 @task
 def _fire_task(self, exclude=None):
 """Build and send the emails as a celery task."""
 connection = mail.get_connection(fail_silently=True)
 # Warning: fail_silently swallows errors thrown by the generators, too.
 connection.open()
 for m in self._mails(self._users_watching(exclude=exclude)):
 connection.send_messages([m])

 @classmethod
[docs] def _validate_filters(cls, filters):
 """Raise a TypeError if ``filters`` contains any keys inappropriate to
 this event class."""
 for k in filters.iterkeys():
 if k not in cls.filters:
 # Mirror "unexpected keyword argument" message:
 raise TypeError("%s got an unsupported filter type '%s'" %
 (cls.__name__, k))

[docs] def _users_watching_by_filter(self, object_id=None, exclude=None,
 **filters):
 """Return an iterable of (``User``/:class:`~tidings.models.EmailUser`,
 [:class:`~tidings.models.Watch` objects]) tuples watching the event.

 Of multiple Users/EmailUsers having the same email address, only one is
 returned. Users are favored over EmailUsers so we are sure to be able
 to, for example, include a link to a user profile in the mail.

 The list of :class:`~tidings.models.Watch` objects includes both
 those tied to the given User (if there is a registered user)
 and to any anonymous Watch having the same email address. This
 allows you to include all relevant unsubscribe URLs in a mail,
 for example. It also lets you make decisions in the
 :meth:`~tidings.events.EventUnion._mails()` method of
 :class:`~tidings.events.EventUnion` based on the kinds of
 watches found.

 "Watching the event" means having a Watch whose ``event_type`` is
 ``self.event_type``, whose ``content_type`` is ``self.content_type`` or
 ``NULL``, whose ``object_id`` is ``object_id`` or ``NULL``, and whose
 WatchFilter rows match as follows: each name/value pair given in
 ``filters`` must be matched by a related WatchFilter, or there must be
 no related WatchFilter having that name. If you find yourself wanting
 the lack of a particularly named WatchFilter to scuttle the match, use
 a different event_type instead.

 :arg exclude: If a saved user is passed in as this argument, that user
 will never be returned, though anonymous watches having the same
 email address may. A sequence of users may also be passed in.

 """
 # I don't think we can use the ORM here, as there's no way to get a
 # second condition (name=whatever) into a left join. However, if we
 # were willing to have 2 subqueries run for every watch row--select
 # {are there any filters with name=x?} and select {is there a filter
 # with name=x and value=y?}--we could do it with extra(). Then we could
 # have EventUnion simply | the QuerySets together, which would avoid
 # having to merge in Python.

 if exclude is None:
 exclude = []
 elif not isinstance(exclude, Sequence):
 exclude = [exclude]

 def filter_conditions():
 """Return joins, WHERE conditions, and params to bind to them in
 order to check a notification against all the given filters."""
 # Not a one-liner. You're welcome. :-)
 self._validate_filters(filters)
 joins, wheres, join_params, where_params = [], [], [], []
 for n, (k, v) in enumerate(filters.iteritems()):
 joins.append(
 'LEFT JOIN tidings_watchfilter f{n} '
 'ON f{n}.watch_id=w.id '
 'AND f{n}.name=%s'.format(n=n))
 join_params.append(k)
 wheres.append('(f{n}.value=%s '
 'OR f{n}.value IS NULL)'.format(n=n))
 where_params.append(hash_to_unsigned(v))
 return joins, wheres, join_params + where_params

 # Apply watchfilter constraints:
 joins, wheres, params = filter_conditions()

 # Start off with event_type, which is always a constraint. These go in
 # the `wheres` list to guarantee that the AND after the {wheres}
 # substitution in the query is okay.
 wheres.append('w.event_type=%s')
 params.append(self.event_type)

 # Constrain on other 1-to-1 attributes:
 if self.content_type:
 wheres.append('(w.content_type_id IS NULL '
 'OR w.content_type_id=%s)')
 params.append(ContentType.objects.get_for_model(
 self.content_type).id)
 if object_id:
 wheres.append('(w.object_id IS NULL OR w.object_id=%s)')
 params.append(object_id)
 if exclude:
 # Don't try excluding unsaved Users:1
 if not all(e.id for e in exclude):
 raise ValueError("Can't exclude an unsaved User.")

 wheres.append('(u.id IS NULL OR u.id NOT IN (%s))' %
 ', '.join('%s' for e in exclude))
 params.extend(e.id for e in exclude)

 def get_fields(model):
 if hasattr(model._meta, '_fields'):
 # For django versions < 1.6
 return model._meta._fields()
 else:
 # For django versions >= 1.6
 return model._meta.fields

 User = get_user_model()
 model_to_fields = dict((m, [f.get_attname() for f in get_fields(m)])
 for m in [User, Watch])
 query_fields = [
 'u.{0}'.format(field) for field in model_to_fields[User]]
 query_fields.extend([
 'w.{0}'.format(field) for field in model_to_fields[Watch]])

 query = (
 'SELECT {fields} '
 'FROM tidings_watch w '
 'LEFT JOIN {user_table} u ON u.id=w.user_id {joins} '
 'WHERE {wheres} '
 'AND (length(w.email)>0 OR length(u.email)>0) '
 'AND w.is_active '
 'ORDER BY u.email DESC, w.email DESC').format(
 fields=', '.join(query_fields),
 joins=' '.join(joins),
 wheres=' AND '.join(wheres),
 user_table=User._meta.db_table)
 # IIRC, the DESC ordering was something to do with the placement of
 # NULLs. Track this down and explain it.

 # Put watch in a list just for consistency. Once the pairs go through
 # _unique_by_email, watches will be in a list, and EventUnion uses the
 # same function to union already-list-enclosed pairs from individual
 # events.
 return _unique_by_email((u, [w]) for u, w in
 multi_raw(query, params, [User, Watch], model_to_fields))

 @classmethod
[docs] def _watches_belonging_to_user(cls, user_or_email, object_id=None,
 **filters):
 """Return a QuerySet of watches having the given user or email, having
 (only) the given filters, and having the event_type and content_type
 attrs of the class.

 Matched Watches may be either confirmed and unconfirmed. They may
 include duplicates if the get-then-create race condition in
 :meth:`notify()` allowed them to be created.

 If you pass an email, it will be matched against only the email
 addresses of anonymous watches. At the moment, the only integration
 point planned between anonymous and registered watches is the claiming
 of anonymous watches of the same email address on user registration
 confirmation.

 If you pass the AnonymousUser, this will return an empty QuerySet.

 """
 # If we have trouble distinguishing subsets and such, we could store a
 # number_of_filters on the Watch.
 cls._validate_filters(filters)

 if isinstance(user_or_email, basestring):
 user_condition = Q(email=user_or_email)
 elif not user_or_email.is_anonymous():
 user_condition = Q(user=user_or_email)
 else:
 return Watch.objects.none()

 # Filter by stuff in the Watch row:
 watches = getattr(Watch, 'uncached', Watch.objects).filter(
 user_condition,
 Q(content_type=ContentType.objects.get_for_model(cls.content_type))
 if cls.content_type
 else Q(),
 Q(object_id=object_id)
 if object_id
 else Q(),
 event_type=cls.event_type).extra(
 where=['(SELECT count(*) FROM tidings_watchfilter WHERE '
 'tidings_watchfilter.watch_id='
 'tidings_watch.id)=%s'],
 params=[len(filters)])
 # Optimization: If the subselect ends up being slow, store the number
 # of filters in each Watch row or try a GROUP BY.

 # Apply 1-to-many filters:
 for k, v in filters.iteritems():
 watches = watches.filter(filters__name=k,
 filters__value=hash_to_unsigned(v))

 return watches

 @classmethod
 # Funny arg name to reserve use of nice ones for filters
[docs] def is_notifying(cls, user_or_email_, object_id=None, **filters):
 """Return whether the user/email is watching this event (either
 active or inactive watches), conditional on meeting the criteria in
 ``filters``.

 Count only watches that match the given filters exactly--not ones which
 match merely a superset of them. This lets callers distinguish between
 watches which overlap in scope. Equivalently, this lets callers check
 whether :meth:`notify()` has been called with these arguments.

 Implementations in subclasses may take different arguments--for
 example, to assume certain filters--though most will probably just use
 this. However, subclasses should clearly document what filters they
 supports and the meaning of each.

 Passing this an ``AnonymousUser`` always returns ``False``. This means
 you can always pass it ``request.user`` in a view and get a sensible
 response.

 """
 return cls._watches_belonging_to_user(user_or_email_,
 object_id=object_id,
 **filters).exists()

 @classmethod
[docs] def notify(cls, user_or_email_, object_id=None, **filters):
 """Start notifying the given user or email address when this event
 occurs and meets the criteria given in ``filters``.

 Return the created (or the existing matching) Watch so you can call
 :meth:`~tidings.models.Watch.activate()` on it if you're so inclined.

 Implementations in subclasses may take different arguments; see the
 docstring of :meth:`is_notifying()`.

 Send an activation email if an anonymous watch is created and
 :data:`~django.conf.settings.TIDINGS_CONFIRM_ANONYMOUS_WATCHES` is
 ``True``. If the activation request fails, raise a
 ActivationRequestFailed exception.

 Calling :meth:`notify()` twice for an anonymous user will send the
 email each time.

 """
 # A test-for-existence-then-create race condition exists here, but it
 # doesn't matter: de-duplication on fire() and deletion of all matches
 # on stop_notifying() nullify its effects.
 try:
 # Pick 1 if >1 are returned:
 watch = cls._watches_belonging_to_user(
 user_or_email_,
 object_id=object_id,
 **filters)[0:1].get()
 except Watch.DoesNotExist:
 create_kwargs = {}
 if cls.content_type:
 create_kwargs['content_type'] = \
 ContentType.objects.get_for_model(cls.content_type)
 create_kwargs['email' if isinstance(user_or_email_, basestring)
 else 'user'] = user_or_email_
 # Letters that can't be mistaken for other letters or numbers in
 # most fonts, in case people try to type these:
 distinguishable_letters = \
 'abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRTUVWXYZ'
 secret = ''.join(random.choice(distinguishable_letters)
 for x in xrange(10))
 # Registered users don't need to confirm, but anonymous users do.
 is_active = ('user' in create_kwargs or
 not settings.TIDINGS_CONFIRM_ANONYMOUS_WATCHES)
 if object_id:
 create_kwargs['object_id'] = object_id
 watch = Watch.objects.create(
 secret=secret,
 is_active=is_active,
 event_type=cls.event_type,
 **create_kwargs)
 for k, v in filters.iteritems():
 WatchFilter.objects.create(watch=watch, name=k,
 value=hash_to_unsigned(v))
 # Send email for inactive watches.
 if not watch.is_active:
 email = watch.user.email if watch.user else watch.email
 message = cls._activation_email(watch, email)
 try:
 message.send()
 except SMTPException, e:
 watch.delete()
 raise ActivationRequestFailed(e.recipients)
 return watch

 @classmethod
[docs] def stop_notifying(cls, user_or_email_, **filters):
 """Delete all watches matching the exact user/email and filters.

 Delete both active and inactive watches. If duplicate watches
 exist due to the get-then-create race condition, delete them all.

 Implementations in subclasses may take different arguments; see the
 docstring of :meth:`is_notifying()`.

 """
 cls._watches_belonging_to_user(user_or_email_, **filters).delete()

 # TODO: If GenericForeignKeys don't give us cascading deletes, make a
 # stop_notifying_all(**filters) or something. It should delete any watch of
 # the class's event_type and content_type and having filters matching each
 # of **filters. Even if there are additional filters on a watch, that watch
 # should still be deleted so we can delete, for example, any watch that
 # references a certain Question instance. To do that, factor such that you
 # can effectively call _watches_belonging_to_user() without it calling
 # extra().

 # Subclasses should implement the following:

[docs] def _mails(self, users_and_watches):
 """Return an iterable yielding an EmailMessage to send to each user.

 :arg users_and_watches: an iterable of (User or EmailUser, [Watches])
 pairs where the first element is the user to send to and the second
 is a list of watches (usually just one) that indicated the
 user's interest in this event

 :meth:`~tidings.utils.emails_with_users_and_watches()` can come in
 handy for generating mails from Django templates.

 """
 # Did this instead of mail() because a common case might be sending the
 # same mail to many users. mail() would make it difficult to avoid
 # redoing the templating every time.
 raise NotImplementedError

[docs] def _users_watching(self, **kwargs):
 """Return an iterable of Users and EmailUsers watching this event
 and the Watches that map them to it.

 Each yielded item is a tuple: (User or EmailUser, [list of Watches]).

 Default implementation returns users watching this object's event_type
 and, if defined, content_type.

 """
 return self._users_watching_by_filter(**kwargs)

 @classmethod
[docs] def _activation_email(cls, watch, email):
 """Return an EmailMessage to send to anonymous watchers.

 They are expected to follow the activation URL sent in the email to
 activate their watch, so you should include at least that.

 """
 # TODO: basic implementation.
 return mail.EmailMessage('TODO', 'Activate!',
 settings.TIDINGS_FROM_ADDRESS,
 [email])

 @classmethod
[docs] def _activation_url(cls, watch):
 """Return a URL pointing to a view which :meth:`activates
 <tidings.models.Watch.activate()>` a watch.

 TODO: provide generic implementation of this before liberating.
 Generic implementation could involve a setting to the default
 ``reverse()`` path, e.g. ``'tidings.activate_watch'``.

 """
 raise NotImplementedError

 @classmethod
[docs] def description_of_watch(cls, watch):
 """Return a description of the Watch which can be used in emails.

 For example, "changes to English articles"

 """
 raise NotImplementedError

[docs]class EventUnion(Event):
 """Fireable conglomeration of multiple events

 Use this when you want to send a single mail to each person watching any of
 several events. For example, this sends only 1 mail to a given user, even
 if he was being notified of all 3 events::

 EventUnion(SomeEvent(), OtherEvent(), ThirdEvent()).fire()

 """
 # Calls some private methods on events, but this and Event are good
 # friends.

[docs] def __init__(self, *events):
 """:arg events: the events of which to take the union"""
 super(EventUnion, self).__init__()
 self.events = events

[docs] def _mails(self, users_and_watches):
 """Default implementation calls the
 :meth:`~tidings.events.Event._mails()` of my first event but may
 pass it any of my events as ``self``.

 Use this default implementation when the content of each event's mail
 template is essentially the same, e.g. "This new post was made.
 Enjoy.". When the receipt of a second mail from the second event would
 add no value, this is a fine choice. If the second event's email would
 add value, you should probably fire both events independently and let
 both mails be delivered. Or, if you would like to send a single mail
 with a custom template for a batch of events, just subclass
 :class:`EventUnion` and override this method.

 """
 return self.events[0]._mails(users_and_watches)

 def _users_watching(self, **kwargs):
 # Get a sorted iterable of user-watches pairs:
 users_and_watches = collate(
 *[e._users_watching(**kwargs) for e in self.events],
 key=lambda (user, watch): user.email.lower(),
 reverse=True)

 # Pick the best User out of each cluster of identical email addresses:
 return _unique_by_email(users_and_watches)

[docs]class InstanceEvent(Event):
 """Abstract superclass for watching a specific instance of a Model.

 Subclasses must specify an ``event_type`` and should specify a
 ``content_type``.

 """
[docs] def __init__(self, instance, *args, **kwargs):
 """:arg instance: the instance someone would have to be watching in order to be notified when this event is fired"""
 super(InstanceEvent, self).__init__(*args, **kwargs)
 self.instance = instance

 @classmethod
[docs] def notify(cls, user_or_email, instance):
 """Create, save, and return a watch which fires when something
 happens to ``instance``."""
 return super(InstanceEvent, cls).notify(user_or_email,
 object_id=instance.pk)

 @classmethod
[docs] def stop_notifying(cls, user_or_email, instance):
 """Delete the watch created by notify."""
 super(InstanceEvent, cls).stop_notifying(user_or_email,
 object_id=instance.pk)

 @classmethod
[docs] def is_notifying(cls, user_or_email, instance):
 """Check if the watch created by notify exists."""
 return super(InstanceEvent, cls).is_notifying(user_or_email,
 object_id=instance.pk)

[docs] def _users_watching(self, **kwargs):
 """Return users watching this instance."""
 return self._users_watching_by_filter(object_id=self.instance.pk,
 **kwargs)

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_modules/tidings/tasks.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for tidings.tasks

from celery.task import task

from tidings.models import Watch

@task()
[docs]def claim_watches(user):
 """Attach any anonymous watches having a user's email to that user.

 Call this from your user registration process if you like.

 """
 Watch.objects.filter(email=user.email).update(email=None, user=user)

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_modules/tidings/models.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 		Module code »

 Source code for tidings.models

from django.conf import settings
from django.contrib.auth.models import AnonymousUser
from django.contrib.contenttypes.models import ContentType
from django.contrib.sites.models import Site
from django.db import models, connections, router

try:
 from django.contrib.contenttypes.fields import (GenericForeignKey,
 GenericRelation)
except ImportError:
 from django.contrib.contenttypes.generic import (GenericForeignKey,
 GenericRelation)

from tidings.utils import import_from_setting, reverse

ModelBase = import_from_setting('TIDINGS_MODEL_BASE',
 'django.db.models.Model')

[docs]def multi_raw(query, params, models, model_to_fields):
 """Scoop multiple model instances out of the DB at once, given a query that
 returns all fields of each.

 Return an iterable of sequences of model instances parallel to the
 ``models`` sequence of classes. For example::

 [(<User such-and-such>, <Watch such-and-such>), ...]

 """
 cursor = connections[router.db_for_read(models[0])].cursor()
 cursor.execute(query, params)
 rows = cursor.fetchall()

 for row in rows:
 next_value = iter(row).next
 yield [model_class(**dict((a, next_value())
 for a in model_to_fields[model_class]))
 for model_class in models]

[docs]class Watch(ModelBase):
 """The registration of a user's interest in a certain event

 At minimum, specifies an event_type and thereby an
 :class:`~tidings.events.Event` subclass. May also specify a content type
 and/or object ID and, indirectly, any number of
 :class:`WatchFilters <WatchFilter>`.

 """
 #: Key used by an Event to find watches it manages:
 event_type = models.CharField(max_length=30, db_index=True)

 #: Optional reference to a content type:
 content_type = models.ForeignKey(ContentType, null=True, blank=True)
 object_id = models.PositiveIntegerField(db_index=True, null=True)
 content_object = GenericForeignKey('content_type', 'object_id')

 user = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, blank=True)

 #: Email stored only in the case of anonymous users:
 email = models.EmailField(db_index=True, null=True, blank=True)

 #: Secret for activating anonymous watch email addresses.
 secret = models.CharField(max_length=10, null=True, blank=True)
 #: Active watches receive notifications, inactive watches don't.
 is_active = models.BooleanField(default=False, db_index=True)

 def __unicode__(self):
 # TODO: Trace event_type back to find the Event subclass, and ask it
 # how to describe me in English.
 rest = self.content_object or self.content_type or self.object_id
 return u'id=%s, type=%s, content_object=%s' % (self.pk, self.event_type,
 unicode(rest))

[docs] def activate(self):
 """Enable this watch so it actually fires.

 Return ``self`` to support method chaining.

 """
 self.is_active = True
 return self

[docs] def unsubscribe_url(self):
 """Return the absolute URL to visit to delete me."""
 server_relative = ('%s?s=%s' % (reverse('tidings.unsubscribe',
 args=[self.pk]),
 self.secret))
 return 'https://%s%s' % (Site.objects.get_current().domain,
 server_relative)

[docs]class WatchFilter(ModelBase):
 """Additional key/value pairs that pare down the scope of a watch"""

 watch = models.ForeignKey(Watch, related_name='filters')
 name = models.CharField(max_length=20)

 #: Either an int or the hash of an item in a reasonably small set, which is
 #: indicated by the name field. See comments by
 #: :func:`~tidings.utils.hash_to_unsigned()` for more on what is reasonably
 #: small.
 value = models.PositiveIntegerField()

 class Meta(object):
 # There's no particular reason we couldn't allow multiple values for
 # one name to be ORed together, but the API needs a little work
 # (accepting lists passed to notify()) to support that.
 #
 # This ordering makes the index usable for lookups by name.
 unique_together = ('name', 'watch')

 def __unicode__(self):
 return u'WatchFilter %s: %s=%s' % (self.pk, self.name, self.value)

[docs]class NotificationsMixin(models.Model):
 """Mixin for notifications models that adds watches as a generic relation.

 So we get cascading deletes for free, yay!

 """
 watches = GenericRelation(Watch)

 class Meta(object):
 abstract = True

[docs]class EmailUser(AnonymousUser):
 """An anonymous user identified only by email address

 To test whether a returned user is an anonymous user, call
 ``is_anonymous()``.

 """
 def __init__(self, email=''):
 self.email = email

 def __unicode__(self):
 return 'Anonymous user <%s>' % self.email

 __repr__ = AnonymousUser.__str__

 def __eq__(self, other):
 return self.email == other.email

 def __ne__(self, other):
 return self.email != other.email

 def __hash__(self):
 return hash(self.email)

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-tidings 1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, The Mozilla Foundation.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

