
django-tidings Documentation
Release 1.1

Erik Rose, Paul Craciunoiu, and the support.mozilla.com team

September 27, 2017

Contents

1 Contents 3
1.1 Installation . 3
1.2 Introduction . 3
1.3 Settings . 8
1.4 Views . 9
1.5 Design Rationale . 9
1.6 Development Notes . 10
1.7 Version History . 10
1.8 Reference Documentation . 11

2 Indices and tables 17

3 Credits 19

Python Module Index 21

i

ii

django-tidings Documentation, Release 1.1

django-tidings is a framework for sending email notifications to users who have registered interest in certain events,
such as the modification of some model object. Used by support.mozilla.com, it is optimized for large-scale installa-
tions. Its features include...

• Asynchronous operation using the celery task queue

• De-duplication of notifications

• Association of subscriptions with either registered Django users or anonymous email addresses

• Optional confirmation of anonymous subscriptions

• Hook points for customizing any page drawn and any email sent

Contents 1

http://celeryproject.org/

django-tidings Documentation, Release 1.1

2 Contents

CHAPTER 1

Contents

Installation

To install django-tidings in your Django project, make these changes to settings.py:

1. Add tidings to INSTALLED_APPS:

INSTALLED_APPS = [
'other',
'apps',
'here',
...
'tidings'

]

2. Define the settings TIDINGS_FROM_ADDRESS and TIDINGS_CONFIRM_ANONYMOUS_WATCHES.

Introduction

Here we introduce django-tidings by way of examples and discuss some theory behind its design.

A Simple Example

On support.mozilla.com, we host a wiki which houses documents in 80 different human languages. For each document,
we keep a record of revisions (in the standard wiki fashion) stretching back to the document’s creation:

Document ---- Revision 1
__ Revision 2
__ Revision 3
__ ...

We let users register their interest in (or watch) a specific language, and they are notified when any document in that
language is edited. In our “edit page” view, we explicitly let the system know that a noteworthy event has occurred,
like so...

EditInLanguageEvent(revision).fire()

...which, if revision‘s document was written in English, sends a mail to anyone who was watching English-
language edits. The watching would have been effected through view code like this:

3

django-tidings Documentation, Release 1.1

def watch_language(request):
"""Start notifying the current user of edits in the request's language."""
EditInLanguageEvent.notify(request.user, language=request.locale)
...and then render a page or something.

Thus we introduce the two core concepts of django-tidings:

Events Things that occur, like the editing of a document in a certain language

Watches Subscriptions. Specifically, mappings from events to the users or email addresses which are
interested in them

Everything in tidings centers around these two types of objects.

Events, Watches, and Scoping

django-tidings is basically a big dispatch engine: something happens (that is, an Event subclass fires), and tid-
ings then has to determine which Watches are relevant so it knows whom to mail. Each kind of event has an
event_type, an arbitrary string that distinguishes it, and each watch references an event subclass by that string.
However, there is more to the watch-event relationship than that; a watch has a number of other fields which can
further refine its scope:

watch ---- event_type
__ content_type
__ object_id
__ 0..n key/value pairs ("filters")

In addition to an event type, a watch may also reference a content type, an object ID, and one or more filters, key/value
pairs whose values come out of an enumerated set (no larger than integer space). The key concept in django-tidings,
the one which gives it its flexibility, is that only an Event subclass determines the meaning of its Watches’ fields.
event_type always points to an Event subclass, but that is the only constant. content_type and object_id
are almost always used as their names imply—but only by convention. And filters are designed from the start to be
arbitrary.

As a user of django-tidings, you will be writing a lot of Event subclasses and deciding how to make use of Watch’s
fields for each. Let’s take apart our simple example to see how the EditInLanguageEvent class might be de-
signed:

1 class EditInLanguageEvent(Event):
2 """Event fired when any document in a certain language is edited
3

4 Takes a revision when constructed and filters according to that
5 revision's document's language
6

7 notify(), stop_notifying(), and is_notifying() take these args:
8

9 (user_or_email, language=some_language)
10

11 """
12 event_type = 'edited wiki document in language'
13 filters = set(['language']) # for validation only
14

15 def __init__(self, revision):
16 super(EditInLanguageEvent, self).__init__()
17 self.revision = revision
18

19 def _users_watching(self, **kwargs):
20 return self._users_watching_by_filter(

4 Chapter 1. Contents

django-tidings Documentation, Release 1.1

21 language=self.revision.document.language,
22 **kwargs)
23

24 ...

This event makes use of only two Watch fields: the event_type (which is implicitly handled by the frame-
work) and a filter with the key “language”. content_type and object_id are unused. The action happens
in the _users_watching() method, which Event.fire() calls to determine whom to mail. Line 20 calls
_users_watching_by_filter(), which is the most interesting method in the entire framework. In essence,
this line says “Find me all the watches matching my event_type and having a ‘language’ filter with the value
self.revision.document.language.” (It is always a good idea to pass **kwargs along so you can sup-
port the exclude option.)

Watch Filters

This is a good point to say a word about WatchFilters. A filter is a key/value pair. The key is a string and goes
into the database verbatim. The value, however, is only a 4-byte unsigned int. If you pass a string as a watch filter
value, it will be hashed to make it fit. Thus, watch filters are no good for storing data but only for distinguishing among
members of enumerated sets.

An exception is if you pass an integer as a filter value. The framework will notice this and let the int through unmodi-
fied. Thus, you can put (unchecked) integer foreign key references into filters quite happily.

Details of the hashing behavior are documented in hash_to_unsigned().

Wildcards

Think back to our notify() call:

EditInLanguageEvent.notify(request.user, language=request.locale)

It tells the framework to create a watch with the event_type ’edited wiki document in locale’ (tying
it to EditInLanguageEvent) and a filter mapping “language” to some locale.

Now, what if we had made this call instead, omitting the language kwarg?

EditInLanguageEvent.notify(request.user)

This says “request.user is interested in every EditInLanguageEvent, regardless of language”, simply by
omission of the “language” filter. A similar logic applies to events which use the content_type or object_id
fields: leave them blank in a call to notify(), and the user will watch events with any value of them. If, for some
odd reason, a user ends up watching both all EditInLanguageEvents and German EditInLanguageEvents
in particular, never fear: he will not receive two mails every time someone edits a German article. tidings will
automatically de-duplicate users within the scope of one event class. Also, when faced with a registered user and an
anonymous subscription having the same email address, tidings will favor the registered user. That way, any mails you
generate will have the opportunity to use a nice username, etc.

Completing the Event Implementation

A few more methods are necessary to get to a fully working EditInLanguageEvent. Let’s add them now:

class EditInLanguageEvent(Event):

Previous methods here

1.2. Introduction 5

django-tidings Documentation, Release 1.1

def _mails(self, users_and_watches):
"""Construct the mails to send."""
document = self.revision.document

This loop is shown for clarity, but in real code, you should use
the tidings.utils.emails_with_users_and_watches convenience
function.
for user, watches in users_and_watches:

yield EmailMessage(
'Notification: an edit!',
'Document %s was edited.' % document.title,
settings.TIDINGS_FROM_ADDRESS,
[user.email])

@classmethod
def _activation_email(cls, watch, email):

"""Return an EmailMessage to send to anonymous watchers.

They are expected to follow the activation URL sent in the email to
activate their watch, so you should include at least that.

"""
return EmailMessage(

'Confirm your subscription',
'Click the link if you really want to subscribe: %s' % \

cls._activation_url(watch)
settings.TIDINGS_FROM_ADDRESS,
[email])

@classmethod
def _activation_url(cls, watch):

"""Return a URL pointing to a view that activates the watch."""
return reverse('myapp.activate_watch', args=[watch.id, watch.secret])

Default implementations of _activation_email() and _activation_url() are coming in a future version
of tidings.

Watching an Instance

Often, we want to watch for changes to a specific object rather than a class of them. tidings comes with a purpose-built
abstract superclass for this, InstanceEvent.

In the support.mozilla.com wiki, we allow a user to watch a specific document. For example...

EditDocumentEvent.notify(request.user, document)

With the help of InstanceEvent, this event can be implemented just by choosing an event_type and a
content_type and, because we need Revision info in addition to Document info when we build the mails, over-
riding __init__():

class EditDocumentEvent(InstanceEvent):
"""Event fired when a certain document is edited"""
event_type = 'wiki edit document'
content_type = Document

def __init__(self, revision):
"""This is another common pattern: we need to pass the Document to

6 Chapter 1. Contents

django-tidings Documentation, Release 1.1

InstanceEvent's constructor, but we also need to keep the new
Revision around so we can pull info from it when building our
mails."""
super(EditDocumentEvent, self).__init__(revision.document)
self.revision = revision

def _mails(self, users_and_watches):
...

For more detail, see the InstanceEvent documentation.

De-duplication

We have already established that mails get de-duplicated within the scope of one event class, but what about across
many events? What happens when a document is edited and some user was watching both it specifically and its
language in general? Does he receive two mails? Not if you use EventUnion.

When your code does something that could cause both events to happen, the naive approach would be to call them
serially:

EditDocumentEvent(revision).fire()
EditInLanguageEvent(revision).fire()

That would send two mails. But if we use the magical EventUnion construct instead...

EventUnion(EditDocumentEvent(revision), EditInLanguageEvent(revision)).fire()

...tidings is informed that you’re firing a bunch of events, and it sends only one mail.

A few notes:

• The _mails() method from the first event class passed is the one that’s used, though you can change this by
subclassing EventUnion and overriding its _mails().

• Like the single-event de-duplication, EventUnion favors registered users over anonymous email addresses.

The Container Pattern

One common case for de-duplication is when watchable objects contain other watchable objects, as in a discussion
forum where users can watch both threads and entire forums:

forum ---- thread
__ thread
__ thread

In this case, we might imagine having a NewPostInThreadEvent through which users watch a thread and a
NewPostInForumEvent through which they watch a whole forum. Both events would be InstanceEvent
subclasses:

1 class NewPostInForumEvent(InstanceEvent):
2 event_type = 'new post in forum'
3 content_type = Forum
4

5 def __init__(self, post):
6 super(NewPostInForumEvent, self).__init__(post.thread.forum)
7 # Need to store the post for _mails
8 self.post = post
9

1.2. Introduction 7

django-tidings Documentation, Release 1.1

10

11 class NewPostInThreadEvent(InstanceEvent):
12 event_type = 'new post in thread'
13 content_type = Thread
14

15 def __init__(self, post):
16 super(NewPostInThreadEvent, self).__init__(post.thread)
17 # Need to store the post for _mails
18 self.post = post
19

20 def fire(self, **kwargs):
21 """Notify not only watchers of this thread but of the parent forum as well."""
22 return EventUnion(self, NewPostInForumEvent(self.post)).fire(**kwargs)
23

24 def _mails(self, users_and_watches):
25 return emails_with_users_and_watches(
26 'New post: %s' % self.post.title,
27 'forums/email/new_post.ltxt',
28 dict(post=post),
29 users_and_watches)

On line 20, we cleverly override fire(), replacing InstanceEvent’s simple implementation with one that fires the
union of both events. Thus, callers need only ever fire NewPostInThreadEvent, and it will take care of the rest.

Since NewPostInForumEvent will now be fired only from an EventUnion (and not as the first argument), it
can get away without a _mails implementation. The container pattern is very slimming, both to callers and events.

Settings

django-tidings offers several Django settings to customize its behavior:

django.conf.settings.TIDINGS_FROM_ADDRESS
The address from which tidings’ emails will appear to come. Most of the time, the Event
has an opportunity to override this in code, but this setting is used as a default for con-
veniences like emails_with_users_and_watches() and the default implementation of
Event._activation_email().

Default: No default; you must set it manually.

Example:

TIDINGS_FROM_ADDRESS = 'notifications@example.com'

django.conf.settings.TIDINGS_CONFIRM_ANONYMOUS_WATCHES
A Boolean: whether to require email confirmation of anonymous watches. If this is True, tidings will send a
mail to the creator of an anonymous watch with a confirmation link. That link should point to a view which
calls Watch.activate() and saves the watch. (No such built-in view is yet provided.) Until the watch is
activated, tidings will ignore it.

Default: No default; you must set it manually.

Example:

TIDINGS_CONFIRM_ANONYMOUS_WATCHES = True

django.conf.settings.TIDINGS_MODEL_BASE
A dotted path to a model base class to use instead of django.db.models.Model. This can come in handy
if, for example, you would like to add memcached support to tidings’ models. To avoid staleness, tidings will

8 Chapter 1. Contents

django-tidings Documentation, Release 1.1

use the uncached manager (if it exists) on its models when performing a staleness-sensitive operation like
determining whether a user has a certain watch.

Default: ’django.db.models.Model’

Example:

TIDINGS_MODEL_BASE = 'sumo.models.ModelBase'

django.conf.settings.TIDINGS_REVERSE
A dotted path to an alternate implementation of Django’s reverse() function. support.mozilla.com uses this
to make tidings aware of the locale prefixes on its URLs, e.g. /en-US/unsubscribe.

Default: ’django.core.urlresolvers.reverse’

Example:

TIDINGS_REVERSE = 'sumo.urlresolvers.reverse'

Views

If you wish to include unsubscribe links in your notification emails (recommended) and you happen to be using Jinja
templates, you can point them to the provided unsubscribe() view:

tidings.views.unsubscribe(request, watch_id)
Unsubscribe from (i.e. delete) the watch of ID watch_id.

Expects an s querystring parameter matching the watch’s secret.

GET will result in a confirmation page (or a failure page if the secret is wrong). POST will actually delete the
watch (again, if the secret is correct).

The templates assume use of the Jinja templating engine via jingo.Loader and the presence of a base.html
template containing a content block.

If you aren’t using Jinja via jingo.Loader, you can replace the templates with your own django templates.

A stock anonymous-watch-confirmation view is planned for a future version of tidings.

Design Rationale

Explicit Event Firing

Events are manually fired rather than doing something implicit with, for example, signals. This is for two reasons:

1. In the case of events that track changes to model objects, we often want to tell the user exactly what changed.
Pre- or post-save signals don’t give us the original state of the object necessary to determine this, so we would
have to backtrack, hit the database again, and just generally make a mess just to save one or two lines of event-
firing code.

2. Implicitness could easily lead to accidental spam, such as during development or data migration.

If you still want implicitness, it’s trivial to register a signal handler that fires an event.

1.4. Views 9

django-tidings Documentation, Release 1.1

Development Notes

Testing

To run django-tidings’ tests, install tox and run it:

$ pip install tox
$ tox

Documentation

To build the docs, install Sphinx and run this:

make docs

Version History

1.2 (2017-03-22)

• Added support for Django 1.8 and Python 3

• Dropped support for Python 2.6

1.1 (2015-04-23)

• Added support for Django 1.7

• Dropped support for Django 1.4, 1.5 and 1.6

• Dropped mock, Fabric and django-nose dependencies.

• Moved tests outside of app and simplified test setup.

• Added Travis CI: https://travis-ci.org/mozilla/django-tidings

• Moved to ReadTheDocs: https://django-tidings.readthedocs.io/

1.0 (2015-03-03)

• Support Django 1.6.

• Fix a bug in reconstituting models under (perhaps) Django 1.5.x and up.

• Remove rate limit on claim_watches task.

• Add tox to support testing against multiple Django versions.

0.4

• Fix a deprecated celery import path.

• Add support for newer versions of Django, and drop support for older ones. We now support 1.4 and 1.5.

• Add an initial South migration.

Warning: If you’re already using South in your project, you need to run the following command to create a “fake”
migration step in South’s migration history:

python path/to/manage.py migrate tidings --fake

10 Chapter 1. Contents

https://tox.readthedocs.io/en/latest/
https://travis-ci.org/mozilla/django-tidings
https://django-tidings.readthedocs.io/

django-tidings Documentation, Release 1.1

0.3

• Support excluding multiple users when calling fire().

0.2

• API change: _mails() now receives, in each user/watch tuple, a list of Watch objects rather than just
a single one. This enables you to list all relevant watches in your emails or to make decisions from an
EventUnion‘s _mails() method based on what kind of events the user was subscribed to.

• Expose a few attribute docs to Sphinx.

0.1

• Initial release. In production on support.mozilla.com. API may change.

Reference Documentation

After understanding the basic concepts of tidings from the Introduction, these docstrings make a nice comprehensive
reference.

events

class tidings.events.Event
Abstract base class for events

An Event represents, simply, something that occurs. A Watch is a record of someone’s interest in a certain
type of Event, distinguished by Event.event_type.

Fire an Event (SomeEvent.fire()) from the code that causes the interesting event to occur. Fire it any
time the event might have occurred. The Event will determine whether conditions are right to actually send
notifications; don’t succumb to the temptation to do these tests outside the Event, because you’ll end up repeating
yourself if the event is ever fired from more than one place.

Event subclasses can optionally represent a more limited scope of interest by populating the
Watch.content_type field and/or adding related WatchFilter rows holding name/value pairs, the
meaning of which is up to each individual subclass. NULL values are considered wildcards.

Event subclass instances must be pickleable so they can be shuttled off to celery tasks.

classmethod _activation_email(watch, email)
Return an EmailMessage to send to anonymous watchers.

They are expected to follow the activation URL sent in the email to activate their watch, so you should
include at least that.

classmethod _activation_url(watch)
Return a URL pointing to a view which activates a watch.

TODO: provide generic implementation of this before liberating. Generic implementation could involve a
setting to the default reverse() path, e.g. ’tidings.activate_watch’.

_mails(users_and_watches)
Return an iterable yielding an EmailMessage to send to each user.

Parameters users_and_watches – an iterable of (User or EmailUser, [Watches]) pairs
where the first element is the user to send to and the second is a list of watches (usually
just one) that indicated the user’s interest in this event

1.8. Reference Documentation 11

django-tidings Documentation, Release 1.1

emails_with_users_and_watches() can come in handy for generating mails from Django tem-
plates.

_users_watching(**kwargs)
Return an iterable of Users and EmailUsers watching this event and the Watches that map them to it.

Each yielded item is a tuple: (User or EmailUser, [list of Watches]).

Default implementation returns users watching this object’s event_type and, if defined, content_type.

_users_watching_by_filter(object_id=None, exclude=None, **filters)
Return an iterable of (User/EmailUser, [Watch objects]) tuples watching the event.

Of multiple Users/EmailUsers having the same email address, only one is returned. Users are favored over
EmailUsers so we are sure to be able to, for example, include a link to a user profile in the mail.

The list of Watch objects includes both those tied to the given User (if there is a registered user) and to
any anonymous Watch having the same email address. This allows you to include all relevant unsubscribe
URLs in a mail, for example. It also lets you make decisions in the _mails() method of EventUnion
based on the kinds of watches found.

“Watching the event” means having a Watch whose event_type is self.event_type, whose
content_type is self.content_type or NULL, whose object_id is object_id or NULL,
and whose WatchFilter rows match as follows: each name/value pair given in filters must be matched
by a related WatchFilter, or there must be no related WatchFilter having that name. If you find your-
self wanting the lack of a particularly named WatchFilter to scuttle the match, use a different event_type
instead.

Parameters exclude – If a saved user is passed in as this argument, that user will never be
returned, though anonymous watches having the same email address may. A sequence of
users may also be passed in.

classmethod _validate_filters(filters)
Raise a TypeError if filters contains any keys inappropriate to this event class.

classmethod _watches_belonging_to_user(user_or_email, object_id=None, **filters)
Return a QuerySet of watches having the given user or email, having (only) the given filters, and having
the event_type and content_type attrs of the class.

Matched Watches may be either confirmed and unconfirmed. They may include duplicates if the get-then-
create race condition in notify() allowed them to be created.

If you pass an email, it will be matched against only the email addresses of anonymous watches. At the
moment, the only integration point planned between anonymous and registered watches is the claiming of
anonymous watches of the same email address on user registration confirmation.

If you pass the AnonymousUser, this will return an empty QuerySet.

classmethod description_of_watch(watch)
Return a description of the Watch which can be used in emails.

For example, “changes to English articles”

filters = set([])
Possible filter keys, for validation only. For example: set([’color’, ’flavor’])

fire(exclude=None)
Asynchronously notify everyone watching the event.

We are explicit about sending notifications; we don’t just key off creation signals, because the receiver of
a post_save signal has no idea what just changed, so it doesn’t know which notifications to send. Also,
we could easily send mail accidentally: for instance, during tests. If we want implicit event firing, we can
always register a signal handler that calls fire().

12 Chapter 1. Contents

django-tidings Documentation, Release 1.1

Parameters exclude – If a saved user is passed in, that user will not be notified, though
anonymous notifications having the same email address may still be sent. A sequence of
users may also be passed in.

classmethod is_notifying(user_or_email_, object_id=None, **filters)
Return whether the user/email is watching this event (either active or inactive watches), conditional on
meeting the criteria in filters.

Count only watches that match the given filters exactly–not ones which match merely a superset of them.
This lets callers distinguish between watches which overlap in scope. Equivalently, this lets callers check
whether notify() has been called with these arguments.

Implementations in subclasses may take different arguments–for example, to assume certain filters–though
most will probably just use this. However, subclasses should clearly document what filters they supports
and the meaning of each.

Passing this an AnonymousUser always returns False. This means you can always pass it
request.user in a view and get a sensible response.

classmethod notify(user_or_email_, object_id=None, **filters)
Start notifying the given user or email address when this event occurs and meets the criteria given in
filters.

Return the created (or the existing matching) Watch so you can call activate() on it if you’re so
inclined.

Implementations in subclasses may take different arguments; see the docstring of is_notifying().

Send an activation email if an anonymous watch is created and
TIDINGS_CONFIRM_ANONYMOUS_WATCHES is True. If the activation request fails, raise a
ActivationRequestFailed exception.

Calling notify() twice for an anonymous user will send the email each time.

classmethod stop_notifying(user_or_email_, **filters)
Delete all watches matching the exact user/email and filters.

Delete both active and inactive watches. If duplicate watches exist due to the get-then-create race condition,
delete them all.

Implementations in subclasses may take different arguments; see the docstring of is_notifying().

class tidings.events.EventUnion(*events)
Fireable conglomeration of multiple events

Use this when you want to send a single mail to each person watching any of several events. For example, this
sends only 1 mail to a given user, even if he was being notified of all 3 events:

EventUnion(SomeEvent(), OtherEvent(), ThirdEvent()).fire()

__init__(*events)

Parameters events – the events of which to take the union

_mails(users_and_watches)
Default implementation calls the _mails() of my first event but may pass it any of my events as self.

Use this default implementation when the content of each event’s mail template is essentially the same,
e.g. “This new post was made. Enjoy.”. When the receipt of a second mail from the second event would
add no value, this is a fine choice. If the second event’s email would add value, you should probably fire
both events independently and let both mails be delivered. Or, if you would like to send a single mail with
a custom template for a batch of events, just subclass EventUnion and override this method.

1.8. Reference Documentation 13

django-tidings Documentation, Release 1.1

class tidings.events.InstanceEvent(instance, *args, **kwargs)
Abstract superclass for watching a specific instance of a Model.

Subclasses must specify an event_type and should specify a content_type.

__init__(instance, *args, **kwargs)

Parameters instance – the instance someone would have to be watching in

order to be notified when this event is fired

_users_watching(**kwargs)
Return users watching this instance.

classmethod is_notifying(user_or_email, instance)
Check if the watch created by notify exists.

classmethod notify(user_or_email, instance)
Create, save, and return a watch which fires when something happens to instance.

classmethod stop_notifying(user_or_email, instance)
Delete the watch created by notify.

exception tidings.events.ActivationRequestFailed(msgs)
Raised when activation request fails, e.g. if email could not be sent

models

class tidings.models.EmailUser(email=’‘)
An anonymous user identified only by email address

To test whether a returned user is an anonymous user, call is_anonymous().

class tidings.models.NotificationsMixin(*args, **kwargs)
Mixin for notifications models that adds watches as a generic relation.

So we get cascading deletes for free, yay!

class tidings.models.Watch(*args, **kwargs)
The registration of a user’s interest in a certain event

At minimum, specifies an event_type and thereby an Event subclass. May also specify a content type and/or
object ID and, indirectly, any number of WatchFilters.

activate()
Enable this watch so it actually fires.

Return self to support method chaining.

content_type
Optional reference to a content type:

email = None
Email stored only in the case of anonymous users:

event_type = None
Key used by an Event to find watches it manages:

is_active = None
Active watches receive notifications, inactive watches don’t.

secret = None
Secret for activating anonymous watch email addresses.

14 Chapter 1. Contents

django-tidings Documentation, Release 1.1

unsubscribe_url()
Return the absolute URL to visit to delete me.

class tidings.models.WatchFilter(*args, **kwargs)
Additional key/value pairs that pare down the scope of a watch

value = None
Either an int or the hash of an item in a reasonably small set, which is indicated by the name field. See
comments by hash_to_unsigned() for more on what is reasonably small.

tidings.models.multi_raw(query, params, models, model_to_fields)
Scoop multiple model instances out of the DB at once, given a query that returns all fields of each.

Return an iterable of sequences of model instances parallel to the models sequence of classes. For example:

[(<User such-and-such>, <Watch such-and-such>), ...]

tasks

tidings.tasks.claim_watches(user)
Attach any anonymous watches having a user’s email to that user.

Call this from your user registration process if you like.

utils

tidings.utils.hash_to_unsigned(data)
If data is a string or unicode string, return an unsigned 4-byte int hash of it. If data is already an int that fits
those parameters, return it verbatim.

If data is an int outside that range, behavior is undefined at the moment. We rely on the
PositiveIntegerField on WatchFilter to scream if the int is too long for the field.

We use CRC32 to do the hashing. Though CRC32 is not a good general-purpose hash function, it has no
collisions on a dictionary of 38,470 English words, which should be fine for the small sets that WatchFilters
are designed to enumerate. As a bonus, it is fast and available as a built-in function in some DBs. If your set of
filter values is very large or has different CRC32 distribution properties than English words, you might want to
do your own hashing in your Event subclass and pass ints when specifying filter values.

tidings.utils.emails_with_users_and_watches(subject, template_path,
vars, users_and_watches,
from_email=’nobody@example.com’,
**extra_kwargs)

Return iterable of EmailMessages with user and watch values substituted.

A convenience function for generating emails by repeatedly rendering a Django template with the given vars
plus a user and watches key for each pair in users_and_watches

Parameters

• template_path – path to template file

• vars – a map which becomes the Context passed in to the template

• extra_kwargs – additional kwargs to pass into EmailMessage constructor

1.8. Reference Documentation 15

django-tidings Documentation, Release 1.1

views

tidings.views.unsubscribe(request, watch_id)
Unsubscribe from (i.e. delete) the watch of ID watch_id.

Expects an s querystring parameter matching the watch’s secret.

GET will result in a confirmation page (or a failure page if the secret is wrong). POST will actually delete the
watch (again, if the secret is correct).

The templates assume use of the Jinja templating engine via jingo.Loader and the presence of a base.html
template containing a content block.

If you aren’t using Jinja via jingo.Loader, you can replace the templates with your own django templates.

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

django-tidings Documentation, Release 1.1

18 Chapter 2. Indices and tables

CHAPTER 3

Credits

django-tidings was developed by Erik Rose and Paul Craciunoiu, replacing a simpler progenitor written by the whole
support.mozilla.com team, including Ricky Rosario and James Socol.

19

django-tidings Documentation, Release 1.1

20 Chapter 3. Credits

Python Module Index

d
django.conf.settings, 8

t
tidings.events, 11
tidings.models, 14
tidings.tasks, 15
tidings.utils, 15

21

django-tidings Documentation, Release 1.1

22 Python Module Index

Index

Symbols
__init__() (tidings.events.EventUnion method), 13
__init__() (tidings.events.InstanceEvent method), 14
_activation_email() (tidings.events.Event class method),

11
_activation_url() (tidings.events.Event class method), 11
_mails() (tidings.events.Event method), 11
_mails() (tidings.events.EventUnion method), 13
_users_watching() (tidings.events.Event method), 12
_users_watching() (tidings.events.InstanceEvent

method), 14
_users_watching_by_filter() (tidings.events.Event

method), 12
_validate_filters() (tidings.events.Event class method), 12
_watches_belonging_to_user() (tidings.events.Event

class method), 12

A
activate() (tidings.models.Watch method), 14
ActivationRequestFailed, 14

C
claim_watches() (in module tidings.tasks), 15
content_type (tidings.models.Watch attribute), 14

D
description_of_watch() (tidings.events.Event class

method), 12
django.conf.settings (module), 8

E
email (tidings.models.Watch attribute), 14
emails_with_users_and_watches() (in module tid-

ings.utils), 15
EmailUser (class in tidings.models), 14
Event (class in tidings.events), 11
event_type (tidings.models.Watch attribute), 14
EventUnion (class in tidings.events), 13

F
filters (tidings.events.Event attribute), 12
fire() (tidings.events.Event method), 12

H
hash_to_unsigned() (in module tidings.utils), 15

I
InstanceEvent (class in tidings.events), 13
is_active (tidings.models.Watch attribute), 14
is_notifying() (tidings.events.Event class method), 13
is_notifying() (tidings.events.InstanceEvent class

method), 14

M
multi_raw() (in module tidings.models), 15

N
NotificationsMixin (class in tidings.models), 14
notify() (tidings.events.Event class method), 13
notify() (tidings.events.InstanceEvent class method), 14

S
secret (tidings.models.Watch attribute), 14
stop_notifying() (tidings.events.Event class method), 13
stop_notifying() (tidings.events.InstanceEvent class

method), 14

T
tidings.events (module), 11
tidings.models (module), 14
tidings.tasks (module), 15
tidings.utils (module), 15
TIDINGS_CONFIRM_ANONYMOUS_WATCHES (in

module django.conf.settings), 8
TIDINGS_FROM_ADDRESS (in module

django.conf.settings), 8
TIDINGS_MODEL_BASE (in module

django.conf.settings), 8
TIDINGS_REVERSE (in module django.conf.settings), 9

23

django-tidings Documentation, Release 1.1

U
unsubscribe() (in module tidings.views), 9
unsubscribe_url() (tidings.models.Watch method), 14

V
value (tidings.models.WatchFilter attribute), 15

W
Watch (class in tidings.models), 14
WatchFilter (class in tidings.models), 15

24 Index

	Contents
	Installation
	Introduction
	Settings
	Views
	Design Rationale
	Development Notes
	Version History
	Reference Documentation

	Indices and tables
	Credits
	Python Module Index

